论文标题
来自多个数据集的统一标签空间的对象检测
Object Detection with a Unified Label Space from Multiple Datasets
论文作者
论文摘要
给定多个具有不同标签空间的数据集,这项工作的目标是训练一个对所有标签空间的联合预测的对象检测器。这种对象检测器的实际好处是明显的,可以选择与应用程序相关的类别,并合并形成任意现有数据集。但是,由于对象注释不一致,在这种情况下,数据集的幼稚合并是不可能的。考虑一个在一个数据集中注释的对象类别类别,但在另一个数据集中没有注释,尽管该对象本身出现在后一个图像中。因此,某些类别(例如这里的面孔)将被视为一个数据集中的前景,而在另一个数据集中则被视为背景。为了应对这一挑战,我们设计了一个框架,该框架与这样的部分注释一起工作,并利用了我们适应特定情况的伪标签方法。我们提出的损失函数仔细地整合了部分但正确的注释与互补但嘈杂的伪标签。在拟议的新颖设置中的评估需要对测试集进行全面注释。我们收集所需的注释,并根据现有的公共数据集为此任务定义了一个新的具有挑战性的实验设置。与竞争性基线相比,我们显示出表现的改善,并适当改编了现有工作。
Given multiple datasets with different label spaces, the goal of this work is to train a single object detector predicting over the union of all the label spaces. The practical benefits of such an object detector are obvious and significant application-relevant categories can be picked and merged form arbitrary existing datasets. However, naive merging of datasets is not possible in this case, due to inconsistent object annotations. Consider an object category like faces that is annotated in one dataset, but is not annotated in another dataset, although the object itself appears in the latter images. Some categories, like face here, would thus be considered foreground in one dataset, but background in another. To address this challenge, we design a framework which works with such partial annotations, and we exploit a pseudo labeling approach that we adapt for our specific case. We propose loss functions that carefully integrate partial but correct annotations with complementary but noisy pseudo labels. Evaluation in the proposed novel setting requires full annotation on the test set. We collect the required annotations and define a new challenging experimental setup for this task based one existing public datasets. We show improved performances compared to competitive baselines and appropriate adaptations of existing work.