论文标题

关于泄漏的强迫和弹性

On leaky forcing and resilience

论文作者

Alameda, Joseph S., Kritschgau, Jürgen, Warnberg, Nathan, Young, Michael

论文摘要

泄漏是一个顶点,在零强迫过程中不允许执行力。 最近引入了泄漏强迫作为零强迫的新变化,以分析网络中的泄漏如何破坏零强迫过程。 $ \ ell $ -leaky强迫的图形是尽管$ \ ell $泄漏,但最小的零强迫集的大小可能会强制图形。图形$ g $是$ \ ell $ - 如果其零强制号与其$ \ ell $ -leaky迫使号相同。在本文中,我们分析了$ \ ell $ -leaky的强迫,并表明,如果$(\ ell-1)$ - 泄漏的强迫套装$ b $足够强大,那么$ b $是$ \ ell $ - $ -Leaky-leaky-leaky迫使套件。这提供了表征$ \ ell $ -leaky的强迫集的框架。此外,我们考虑了$ \ ell $ rimilient图的结构含义。我们将这些结果应用于限制$ \ ell $ leaky的强迫数量,包括树木,超三角形和网格图。特别是,我们解决了Dillman和Kenter提出的一个问题,该问题在$ 1 $ - 渗出的网格图数上的上限上提出了一个问题。

A leak is a vertex that is not allowed to perform a force during the zero forcing process. Leaky forcing was recently introduced as a new variation of zero forcing in order to analyze how leaks in a network disrupt the zero forcing process. The $\ell$-leaky forcing number of a graph is the size of the smallest zero forcing set that can force a graph despite $\ell$ leaks. A graph $G$ is $\ell$-resilient if its zero forcing number is the same as its $\ell$-leaky forcing number. In this paper, we analyze $\ell$-leaky forcing and show that if an $(\ell-1)$-leaky forcing set $B$ is robust enough, then $B$ is an $\ell$-leaky forcing set. This provides the framework for characterizing $\ell$-leaky forcing sets. Furthermore, we consider structural implications of $\ell$-resilient graphs. We apply these results to bound the $\ell$-leaky forcing number of several graph families including trees, supertriangles, and grid graphs. In particular, we resolve a question posed by Dillman and Kenter concerning the upper bound on the $1$-leaky forcing number of grid graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源