论文标题
通过分类从时间锚的统一表示引起的子级临时关系来预测事件时间
Predicting Event Time by Classifying Sub-Level Temporal Relations Induced from a Unified Representation of Time Anchors
论文作者
论文摘要
从新闻文章中提取活动时间是一项艰巨但有吸引力的任务。与最现有的配对时间链接注释相反,Reimers等人(2016)提出了注释每个事件的时间锚(又称确切时间)。他们的工作代表了时间锚,其单日/多日和某些/不确定的离散表示形式。这增加了建模两个时间锚之间的时间关系的复杂性,这不能归类为艾伦间隔代数的关系(Allen,1990)。 在本文中,我们提出了一种有效的方法,将这种复杂的时间关系分解为子级关系,通过引入单日/多日和某些/不确定的时间锚点的统一四倍表示。时间关系分类器以多标签分类方式进行培训。我们方法的系统结构比现有的决策树模型(Reimers等,2018)要简单得多,该模型由数十个节点分类器组成。这项工作的另一个贡献是,以合理的通知者协议(IAA)构建更大的事件时间语料库(256个新闻文件),以克服现有事件时间库的数据短缺(36个新闻文档)。经验结果表明,我们的方法的表现优于最先进的决策树模型,并且数据大小的增加获得了绩效的显着改善。
Extracting event time from news articles is a challenging but attractive task. In contrast to the most existing pair-wised temporal link annotation, Reimers et al.(2016) proposed to annotate the time anchor (a.k.a. the exact time) of each event. Their work represents time anchors with discrete representations of Single-Day/Multi-Day and Certain/Uncertain. This increases the complexity of modeling the temporal relations between two time anchors, which cannot be categorized into the relations of Allen's interval algebra (Allen, 1990). In this paper, we propose an effective method to decompose such complex temporal relations into sub-level relations by introducing a unified quadruple representation for both Single-Day/Multi-Day and Certain/Uncertain time anchors. The temporal relation classifiers are trained in a multi-label classification manner. The system structure of our approach is much simpler than the existing decision tree model (Reimers et al., 2018), which is composed by a dozen of node classifiers. Another contribution of this work is to construct a larger event time corpus (256 news documents) with a reasonable Inter-Annotator Agreement (IAA), for the purpose of overcoming the data shortage of the existing event time corpus (36 news documents). The empirical results show our approach outperforms the state-of-the-art decision tree model and the increase of data size obtained a significant improvement of performance.