论文标题

立体声的自我适应置信度估计

Self-adapting confidence estimation for stereo

论文作者

Poggi, Matteo, Aleotti, Filippo, Tosi, Fabio, Zaccaroni, Giulio, Mattoccia, Stefano

论文摘要

由于利用这种提示的应用程序的越来越多,估计立体声算法推断出的差异图的信心已成为一项非常相关的任务。尽管自我监督的学习最近已经跨越了许多计算机视觉任务,但在置信度估计领域几乎没有考虑。在本文中,我们提出了一种灵活且轻巧的解决方案,从而使自我适应置信度估计不可知到立体声算法或网络。我们的方法依赖于任何立体声设置(即输入立体声对和输出差距)中可用的最小信息来学习有效的置信度度量。这种策略不仅使我们不仅可以与任何立体声系统进行无缝集成,包括配备了未公开的立体感知方法的消费者和工业设备,而且由于其自我适应能力,因为它在该领域的开箱即用部署。具有不同标准数据集的详尽实验结果支持我们的主张,表明我们的解决方案是有史以来第一个在线学习任何立体声系统的准确置信度估计,而无需对最终用户的任何要求。

Estimating the confidence of disparity maps inferred by a stereo algorithm has become a very relevant task in the years, due to the increasing number of applications leveraging such cue. Although self-supervised learning has recently spread across many computer vision tasks, it has been barely considered in the field of confidence estimation. In this paper, we propose a flexible and lightweight solution enabling self-adapting confidence estimation agnostic to the stereo algorithm or network. Our approach relies on the minimum information available in any stereo setup (i.e., the input stereo pair and the output disparity map) to learn an effective confidence measure. This strategy allows us not only a seamless integration with any stereo system, including consumer and industrial devices equipped with undisclosed stereo perception methods, but also, due to its self-adapting capability, for its out-of-the-box deployment in the field. Exhaustive experimental results with different standard datasets support our claims, showing how our solution is the first-ever enabling online learning of accurate confidence estimation for any stereo system and without any requirement for the end-user.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源