论文标题
材料性质预测的轨道图卷积神经网络
Orbital Graph Convolutional Neural Network for Material Property Prediction
论文作者
论文摘要
与机器学习模型兼容的物质表示在开发具有较高准确性物业预测准确性的模型中起着关键作用。原子轨道相互作用是控制晶体材料特性的重要因素之一,从中推断出原子的局部化学环境。因此,为了开发材料属性预测的强大机器学习模型,必须包括代表这种化学属性的特征。在这里,我们提出了轨道图卷积神经网络(OGCNN),这是一种晶体图卷积神经网络框架,其中包括原子轨道相互作用特征,以可靠的方式学习材料特性。此外,我们将一个编码器 - 模块网络嵌入到OGCNN中,使其能够在基本原子(元素特征),轨道 - 轨道相互作用和拓扑特征之间学习重要特征。我们检查了该模型在广泛的结晶材料数据上的性能,以预测不同的特性。我们通过以下方式对OGCNN模型的性能进行了基准测试:1)Crystal Graph卷积神经网络(CGCNN),2)其他最先进的描述符,用于包括多体张量表示(MBTR)和平稳的原子位置(SOAP)(SOAP)的平稳重叠(SOAP),以及其他常规回归机器的方法不同的是Crystrym crystrym crystrys crystrym crystrys crystrys不同。我们发现OGCNN的表现明显优于它们。具有较高预测精度的OGCNN模型可用于发现巨大阶段和复合空间之间的新材料
Material representations that are compatible with machine learning models play a key role in developing models that exhibit high accuracy for property prediction. Atomic orbital interactions are one of the important factors that govern the properties of crystalline materials, from which the local chemical environments of atoms is inferred. Therefore, to develop robust machine learningmodels for material properties prediction, it is imperative to include features representing such chemical attributes. Here, we propose the Orbital Graph Convolutional Neural Network (OGCNN), a crystal graph convolutional neural network framework that includes atomic orbital interaction features that learns material properties in a robust way. In addition, we embedded an encoder-decoder network into the OGCNN enabling it to learn important features among basic atomic (elemental features), orbital-orbital interactions, and topological features. We examined the performance of this model on a broad range of crystalline material data to predict different properties. We benchmarked the performance of the OGCNN model with that of: 1) the crystal graph convolutional neural network (CGCNN), 2) other state-of-the-art descriptors for material representations including Many-body Tensor Representation (MBTR) and the Smooth Overlap of Atomic Positions (SOAP), and 3) other conventional regression machine learning algorithms where different crystal featurization methods have been used. We find that OGCNN significantly outperforms them. The OGCNN model with high predictive accuracy can be used to discover new materials among the immense phase and compound spaces of materials