论文标题
优化的深层编码器方法用于裂纹分割
Optimized Deep Encoder-Decoder Methods for Crack Segmentation
论文作者
论文摘要
表面裂纹分割构成了具有挑战性的计算机视觉任务,因为裂纹的背景,形状,颜色和大小各不相同。在这项工作中,我们提出了优化的深层编码器方法,这些方法包括多种技术,这些技术产生了裂纹分割性能的提高。具体而言,我们为基于编码器的深度学习体系结构提供了一个解码器,用于语义分割,并研究其成分以提高性能。我们还研究了不同编码器策略的使用,并引入了数据增强政策以增加可用培训数据的量。我们方法的性能评估是在四个公开可用的裂纹分段数据集上进行的。此外,我们将两种技术引入了表面裂纹分割的领域,以前没有在此处使用:使用测试时间启动并对多个训练运行进行统计结果分析生成结果。前者通常会产生提高的性能结果,而后者则可以使方法更可再现和更好地表示能力。使用上述策略与我们提出的编码器架构一起,我们能够在所有数据集中实现新的最新技术结果。
Surface crack segmentation poses a challenging computer vision task as background, shape, colour and size of cracks vary. In this work we propose optimized deep encoder-decoder methods consisting of a combination of techniques which yield an increase in crack segmentation performance. Specifically we propose a decoder-part for an encoder-decoder based deep learning architecture for semantic segmentation and study its components to achieve increased performance. We also examine the use of different encoder strategies and introduce a data augmentation policy to increase the amount of available training data. The performance evaluation of our method is carried out on four publicly available crack segmentation datasets. Additionally, we introduce two techniques into the field of surface crack segmentation, previously not used there: Generating results using test-time-augmentation and performing a statistical result analysis over multiple training runs. The former approach generally yields increased performance results, whereas the latter allows for more reproducible and better representability of a methods results. Using those aforementioned strategies with our proposed encoder-decoder architecture we are able to achieve new state of the art results in all datasets.