论文标题

基于神经网络的自动因素构建

Neural Network-based Automatic Factor Construction

论文作者

Fang, Jie, Lin, Jianwu, Xia, Shutao, Jiang, Yong, Xia, Zhikang, Liu, Xiang

论文摘要

近年来,学术研究人员和定量投资经理没有根据传统和行为财务分析进行手动因素构建,而是利用遗传编程(GP)作为一种自动特征构建工具,该工具从将数据交易为新因素中构建了反向波兰数学表达。但是,随着深度学习的发展,可以使用更强大的功能提取工具。本文提出了基于神经网络的自动因素构建(NNAFC),这是一个量身定制的神经网络框架,可以根据金融领域知识和各种神经网络结构自动构建多元化的财务因素。实验结果表明,NNAFC比GP可以构建更多信息和多样化的因素,从而有效地丰富当前因子库。对于当前市场,与卷积神经网络结构相比,完全连接和复发性神经网络结构都更好地从财务时间序列提取信息。此外,NNAFC构建的新因素始终可以提高回报,Sharpe比率以及多因素定量投资策略的最大降低,因为它们将更多信息和多元化引入了现有因素池。

Instead of conducting manual factor construction based on traditional and behavioural finance analysis, academic researchers and quantitative investment managers have leveraged Genetic Programming (GP) as an automatic feature construction tool in recent years, which builds reverse polish mathematical expressions from trading data into new factors. However, with the development of deep learning, more powerful feature extraction tools are available. This paper proposes Neural Network-based Automatic Factor Construction (NNAFC), a tailored neural network framework that can automatically construct diversified financial factors based on financial domain knowledge and a variety of neural network structures. The experiment results show that NNAFC can construct more informative and diversified factors than GP, to effectively enrich the current factor pool. For the current market, both fully connected and recurrent neural network structures are better at extracting information from financial time series than convolution neural network structures. Moreover, new factors constructed by NNAFC can always improve the return, Sharpe ratio, and the max draw-down of a multi-factor quantitative investment strategy due to their introducing more information and diversification to the existing factor pool.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源