论文标题

视觉运动机械搜索:学习在混乱中检索目标对象

Visuomotor Mechanical Search: Learning to Retrieve Target Objects in Clutter

论文作者

Kurenkov, Andrey, Taglic, Joseph, Kulkarni, Rohun, Dominguez-Kuhne, Marcus, Garg, Animesh, Martín-Martín, Roberto, Savarese, Silvio

论文摘要

在杂乱的环境中搜索对象时,通常有必要执行复杂的交互作用,以便将遮挡对象移开并充分揭示感兴趣的对象并使其可以掌握。由于涉及物理的复杂性以及缺乏杂物的准确模型,因此在不是不可能的情况下,计划和控制精确的预定义相互作用与准确的结果非常困难。在缺乏准确的(正向)模型的问题中,深度加固学习(RL)已证明是映射观测值(例如,图像)以封闭式视觉运动策略形式进行良好相互作用的可行解决方案。但是,Deep RL是效率低下的样本,并且直接应用于基于图像解开对象的问题时失败。在这项工作中,我们提出了一种新颖的深度RL程序,结合了i)教师辅助探索,ii)具有特权信息的批评家,以及iii)中层表示,从而导致样本高效有效的学习,以解决揭示由一堆未知对象遮住的目标对象的问题。我们的实验表明,与基准和消融相比,我们的方法更快地训练并收敛到更有效的揭示解决方案,并且我们发现的策略会导致目标对象的抓地力的平均提高,从而促进下游检索应用。

When searching for objects in cluttered environments, it is often necessary to perform complex interactions in order to move occluding objects out of the way and fully reveal the object of interest and make it graspable. Due to the complexity of the physics involved and the lack of accurate models of the clutter, planning and controlling precise predefined interactions with accurate outcome is extremely hard, when not impossible. In problems where accurate (forward) models are lacking, Deep Reinforcement Learning (RL) has shown to be a viable solution to map observations (e.g. images) to good interactions in the form of close-loop visuomotor policies. However, Deep RL is sample inefficient and fails when applied directly to the problem of unoccluding objects based on images. In this work we present a novel Deep RL procedure that combines i) teacher-aided exploration, ii) a critic with privileged information, and iii) mid-level representations, resulting in sample efficient and effective learning for the problem of uncovering a target object occluded by a heap of unknown objects. Our experiments show that our approach trains faster and converges to more efficient uncovering solutions than baselines and ablations, and that our uncovering policies lead to an average improvement in the graspability of the target object, facilitating downstream retrieval applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源