论文标题

Biometricnet:通过学习将指标正式化为高斯分布,深度不受约束的面部验证

BioMetricNet: deep unconstrained face verification through learning of metrics regularized onto Gaussian distributions

论文作者

Ali, Arslan, Testa, Matteo, Bianchi, Tiziano, Magli, Enrico

论文摘要

我们提出生物态网:深度无约束面部验证的新型框架,该框架学习了一个正规指标以比较面部特征。与诸如面部的流行方法不同,所提出的方法不会对面部特征施加任何特定的指标。取而代之的是,它通过学习潜在表示形式来塑造决策空间,其中匹配和非匹配对被映射到明确的分离且行为良好的目标分布中。特别是,该网络共同学习最佳功能表示形式,以及遵循目标分布的最佳指标,用于区分面部图像。在本文中,我们介绍了这个通用框架,首先是用于面部验证的此类框架,并根据高斯分布进行量身定制。此选择可以使用简单的线性决策边界,该边界可以进行调整以实现错误警报和真实接受率之间所需的权衡,并导致可以以封闭形式写入的损失函数。对公开可用数据集的广泛分析和实验,例如野外标记的面孔(LFW),YouTube面孔(YTF),野外正面良好的名人(CFP)的名人(CFP)以及挑战性的数据集,以及跨年龄LFW(CALFW)等杂交(CALFW),Cross-Pose LFW(CPLFW)的效果(CPLFW)(CPLFW)(CPLFW)(CPLFW)(CPLFW)(CPLFW)(CPLFW)(CPLFW)(CPLFW)(CPLFW)(CPLFW)(AGED ARESIDER)(AGED AREVINES)(AGED ELACERISIDE)(AGED ELACERISIDE)现有最新方法的生物态网。

We present BioMetricNet: a novel framework for deep unconstrained face verification which learns a regularized metric to compare facial features. Differently from popular methods such as FaceNet, the proposed approach does not impose any specific metric on facial features; instead, it shapes the decision space by learning a latent representation in which matching and non-matching pairs are mapped onto clearly separated and well-behaved target distributions. In particular, the network jointly learns the best feature representation, and the best metric that follows the target distributions, to be used to discriminate face images. In this paper we present this general framework, first of its kind for facial verification, and tailor it to Gaussian distributions. This choice enables the use of a simple linear decision boundary that can be tuned to achieve the desired trade-off between false alarm and genuine acceptance rate, and leads to a loss function that can be written in closed form. Extensive analysis and experimentation on publicly available datasets such as Labeled Faces in the wild (LFW), Youtube faces (YTF), Celebrities in Frontal-Profile in the Wild (CFP), and challenging datasets like cross-age LFW (CALFW), cross-pose LFW (CPLFW), In-the-wild Age Dataset (AgeDB) show a significant performance improvement and confirms the effectiveness and superiority of BioMetricNet over existing state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源