论文标题

分析美国有线电视新闻中几十年中出现的是谁和什么

Analyzing Who and What Appears in a Decade of US Cable TV News

论文作者

Hong, James, Crichton, Will, Zhang, Haotian, Fu, Daniel Y., Ritchie, Jacob, Barenholtz, Jeremy, Hannel, Ben, Yao, Xinwei, Murray, Michaela, Moriba, Geraldine, Agrawala, Maneesh, Fatahalian, Kayvon

论文摘要

有线电视新闻每天都有数百万的美国家庭,这意味着关于谁出现在新闻中以及涵盖哪些故事的决定会深刻影响公众舆论和话语。我们从2010年1月至2019年7月分析了来自三个美国有线电视网络(CNN,FOX和MSNBC)的近24/7视频,音频和文本字幕的数据集。从2010年1月到2019年7月。使用机器学习工具,我们在244,038小时的视频中检测到面孔,标签每个脸的性别,标签的性别,识别出杰出的公共图形图形,并识别出Align Textions textions to Audio caudio。我们使用这些标签来执行屏幕时间和单词频率分析。例如,我们发现,总体而言,分别给男性的个体比对女性的人(2010年为2.4倍,2019年的1.9倍)给出的屏幕时间要多得多。我们提供了一个基于交互式网络的工具,可在https://tvnews.stanford.edu上访问,该工具使公众可以对完整的有线电视新闻数据集进行自己的分析。

Cable TV news reaches millions of U.S. households each day, meaning that decisions about who appears on the news and what stories get covered can profoundly influence public opinion and discourse. We analyze a data set of nearly 24/7 video, audio, and text captions from three U.S. cable TV networks (CNN, FOX, and MSNBC) from January 2010 to July 2019. Using machine learning tools, we detect faces in 244,038 hours of video, label each face's presented gender, identify prominent public figures, and align text captions to audio. We use these labels to perform screen time and word frequency analyses. For example, we find that overall, much more screen time is given to male-presenting individuals than to female-presenting individuals (2.4x in 2010 and 1.9x in 2019). We present an interactive web-based tool, accessible at https://tvnews.stanford.edu, that allows the general public to perform their own analyses on the full cable TV news data set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源