论文标题

我们可以相信您的解释吗? Android恶意软件分析中的口译员的理智检查

Can We Trust Your Explanations? Sanity Checks for Interpreters in Android Malware Analysis

论文作者

Fan, Ming, Wei, Wenying, Xie, Xiaofei, Liu, Yang, Guan, Xiaohong, Liu, Ting

论文摘要

随着Android恶意软件的快速增长,提出了许多基于机器学习的恶意软件分析方法来减轻严重现象。但是,这样的分类器是不透明的,非直觉的,并且很难理解内部决策原因。因此,提出了各种解释方法来通过提供重要特征来解释预测。不幸的是,在恶意软件分析域中获得的解释结果一般无法达成共识,这使得分析师对他们是否可以信任这种结果感到困惑。在这项工作中,我们提出了原则指南,以设计三个关键定量指标来衡量其稳定性,鲁棒性和有效性,以评估五种解释方法的质量。此外,我们收集了五个广泛使用的恶意软件数据集,并将解释方法应用于两个任务,包括恶意软件检测和家族识别。根据生成的解释结果,我们根据三个指标对这种解释方法进行了理智检查。结果表明,我们的指标可以评估解释方法,并帮助我们获得恶意软件分析的最典型恶意行为的知识。

With the rapid growth of Android malware, many machine learning-based malware analysis approaches are proposed to mitigate the severe phenomenon. However, such classifiers are opaque, non-intuitive, and difficult for analysts to understand the inner decision reason. For this reason, a variety of explanation approaches are proposed to interpret predictions by providing important features. Unfortunately, the explanation results obtained in the malware analysis domain cannot achieve a consensus in general, which makes the analysts confused about whether they can trust such results. In this work, we propose principled guidelines to assess the quality of five explanation approaches by designing three critical quantitative metrics to measure their stability, robustness, and effectiveness. Furthermore, we collect five widely-used malware datasets and apply the explanation approaches on them in two tasks, including malware detection and familial identification. Based on the generated explanation results, we conduct a sanity check of such explanation approaches in terms of the three metrics. The results demonstrate that our metrics can assess the explanation approaches and help us obtain the knowledge of most typical malicious behaviors for malware analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源