论文标题
可添加循环循环gan,可有效无监督的低剂量CT deoing
AdaIN-Switchable CycleGAN for Efficient Unsupervised Low-Dose CT Denoising
论文作者
论文摘要
最近,尽管计算时间很快,但由于其出色的性能,深入学习的方法已被广泛研究以进行低剂量CT脱氧。特别是,Cyclegan已被证明是一种强大的无监督学习方案,可以改善低剂量CT图像质量而无需匹配的高剂量参考数据。不幸的是,自行车方法的主要局限性之一是它在训练阶段需要两个深神经网络发生器,尽管其中只有一个在推理阶段使用。需要二级辅助发生器来强制执行周期矛盾,但是额外的内存要求和可学习参数的增加是自行车训练的主要障碍。为了解决这个问题,我们在这里提出了使用单个可切换发电机的新型Cyclegan架构。特别是,使用自适应实例归一化(ADAIN)层实现单个发电机,以便可以将低剂量CT图像转换为常规剂量CT图像的基线生成器可以通过简单地更改ADAN代码来切换到将高剂量转换为低剂量的生成器。多亏了共享的基线网络,将额外的内存需求和重量增加得以最小化,即使使用小型培训数据也可以更稳定地进行培训。实验结果表明,所提出的方法的表现优于先前的周期gan接近,而仅使用约一半的参数。
Recently, deep learning approaches have been extensively studied for low-dose CT denoising thanks to its superior performance despite the fast computational time. In particular, cycleGAN has been demonstrated as a powerful unsupervised learning scheme to improve the low-dose CT image quality without requiring matched high-dose reference data. Unfortunately, one of the main limitations of the cycleGAN approach is that it requires two deep neural network generators at the training phase, although only one of them is used at the inference phase. The secondary auxiliary generator is needed to enforce the cycle-consistency, but the additional memory requirement and increases of the learnable parameters are the main huddles for cycleGAN training. To address this issue, here we propose a novel cycleGAN architecture using a single switchable generator. In particular, a single generator is implemented using adaptive instance normalization (AdaIN) layers so that the baseline generator converting a low-dose CT image to a routine-dose CT image can be switched to a generator converting high-dose to low-dose by simply changing the AdaIN code. Thanks to the shared baseline network, the additional memory requirement and weight increases are minimized, and the training can be done more stably even with small training data. Experimental results show that the proposed method outperforms the previous cycleGAN approaches while using only about half the parameters.