论文标题

跟踪minmax功能和自由基laguerre-pólya类

Trace minmax functions and the radical Laguerre-Pólya class

论文作者

Pascoe, J. E.

论文摘要

我们对函数进行分类$ f:(a,b)\ rightarrow \ mathbb {r} $,它满足不等式$$ \ perperatorName {tr} f(a)+f(a)+f(c)\ geq \ geq \ geq \ geq \ geq \ peratatorName {tr} tr} f(b)+f(b)+f(d)$所谓的痕量minmax函数。 (这里$ a \ leq b $如果$ b-a $是正半段的,并且$ f $是通过功能性演算评估的。)当且仅当其派生派衍生物分析地继续前进到上半平面的自我映射时,函数是跟踪minmax的。跟踪minmax函数的负指数$ g = e^{ - f} $满足不平等 $$ \ det g(a)\ det g(c)\ leq \ det g(b)\ det g(d)$$ for $ a,b,c,d $如上所述。我们称此类功能决定性等级。我们表明,决定性等级函数在Laguerre-Pólya类的“根本”中。我们得出了此类功能的积分表示,这实际上是Laguerre-Pólya类功能的Hadamard分解的连续版本。我们应用结果来提供一些等效的Riemann假设。

We classify functions $f:(a,b)\rightarrow \mathbb{R}$ which satisfy the inequality $$\operatorname{tr} f(A)+f(C)\geq \operatorname{tr} f(B)+f(D)$$ when $A\leq B\leq C$ are self-adjoint matrices, $D= A+C-B$, the so-called trace minmax functions. (Here $A\leq B$ if $B-A$ is positive semidefinite, and $f$ is evaluated via the functional calculus.) A function is trace minmax if and only if its derivative analytically continues to a self map of the upper half plane. The negative exponential of a trace minmax function $g=e^{-f}$ satisfies the inequality $$\det g(A) \det g(C)\leq \det g(B) \det g(D)$$ for $A, B, C, D$ as above. We call such functions determinant isoperimetric. We show that determinant isoperimetric functions are in the "radical" of the the Laguerre-Pólya class. We derive an integral representation for such functions which is essentially a continuous version of the Hadamard factorization for functions in the the Laguerre-Pólya class. We apply our results to give some equivalent formulations of the Riemann hypothesis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源