论文标题
单光子和线性光学元件的NP问题的量子验证
Quantum verification of NP problems with single photons and linear optics
论文作者
论文摘要
量子计算正在寻求实现与应用程序相关的计算任务的硬件优化算法。 NP(非确定性多项式时间)是一个复杂性类别,其中包含许多重要但棘手的问题,例如潜在的冲突约束(SAT)的满意度。根据最有根据的指数时间假设,验证尺寸$ n $的SAT实例通常需要$ O(n)$ - 位证明的完整解决方案。相比之下,将解决方案编码为量子位而不是经典位字符串的量子验证算法可以用$ \ tilde {o}(\ sqrt {n})$ qubits执行有关解决方案的验证任务。在这里,我们意识到带有单个光子和线性光学元件的SAT的量子验证机。通过使用可调的光学设置,我们有效地验证了令人满意且难以满足的SAT实例,即使在存在实验性缺陷的情况下,也可以达到清晰的完整性差距。该协议仅需要未进入的光子,在多种模式下进行线性操作,最多只能进行两光子关节测量。这些功能使该协议适用于光子实现,并且可扩展到大问题。我们的结果为量子优势开辟了基本的新途径,并扩展了光学量子计算的计算能力。
Quantum computing is seeking to realize hardware-optimized algorithms for application-related computational tasks. NP (nondeterministic-polynomial-time) is a complexity class containing many important but intractable problems like the satisfiability of potentially conflict constraints (SAT). According to the well-founded exponential time hypothesis, verifying an SAT instance of size $n$ requires generally the complete solution in an $O(n)$-bit proof. In contrast, quantum verification algorithms, which encode the solution into quantum bits rather than classical bit strings, can perform the verification task with quadratically reduced information about the solution in $\tilde{O}(\sqrt{n})$ qubits. Here we realize the quantum verification machine of SAT with single photons and linear optics. By using tunable optical setups, we efficiently verify satisfiable and unsatisfiable SAT instances and achieve a clear completeness-soundness gap even in the presence of experimental imperfections. The protocol requires only unentangled photons, linear operations on multiple modes and at most two-photon joint measurements. These features make the protocol suitable for photonic realization and scalable to large problem sizes. Our results open an essentially new route towards quantum advantages and extend the computational capability of optical quantum computing.