论文标题

无形的希格斯通过矢量玻色融合搜索:一种深度学习的方法

Invisible Higgs search through Vector Boson Fusion: A deep learning approach

论文作者

Ngairangbam, Vishal S., Bhardwaj, Akanksha, Konar, Partha, Nayak, Aruna Kumar

论文摘要

Vector Boson Fusion最初提议作为寻找重型希格斯的替代通道,现在已将自己确立为一种至关重要的搜索方案,以探测Higgs Boson或新物理学的不同特性。我们从低水平的热量计数据中探索了无形衰减的希格斯的深入学习的优点。这样的努力取代了数十年的信仰,对显着事件运动学和辐射模式,这是一种签名,即在矢量玻色子融合机制中没有任何颜色交换。我们将不同的神经网络体系结构之间的研究考虑到低级和高级输入变量是详细的比较分析。为了与现有技术进行一致的比较,我们仔细遵循了CMS搜索的最新实验研究,该研究具有36 fb $^{ - 1} $数据的无形HIGGS。我们发现,利用相同数量的数据,复杂的深度学习技术具有令人印象深刻的能力,可以将无形的分支比率提高三倍。在不依赖任何独家事件重建的情况下,这种新型技术可以在Smlike Higgs Boson的无形分支比率上提供最严格的界限。这样的结果能够严格限制许多不同的BSM模型。

Vector boson fusion proposed initially as an alternative channel for finding heavy Higgs has now established itself as a crucial search scheme to probe different properties of the Higgs boson or for new physics. We explore the merit of deep-learning entirely from the low-level calorimeter data in the search for invisibly decaying Higgs. Such an effort supersedes decades-old faith in the remarkable event kinematics and radiation pattern as a signature to the absence of any color exchange between incoming partons in the vector boson fusion mechanism. We investigate among different neural network architectures, considering both low-level and high-level input variables as a detailed comparative analysis. To have a consistent comparison with existing techniques, we closely follow a recent experimental study of CMS search on invisible Higgs with 36 fb$^{-1}$ data. We find that sophisticated deep-learning techniques have the impressive capability to improve the bound on invisible branching ratio by a factor of three, utilizing the same amount of data. Without relying on any exclusive event reconstruction, this novel technique can provide the most stringent bounds on the invisible branching ratio of the SM-like Higgs boson. Such an outcome has the ability to constraint many different BSM models severely.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源