论文标题

关于度量陷阱和边界的相互作用

On the interaction of metric trapping and a boundary

论文作者

Datchev, Kiril, Metcalfe, Jason, Shapiro, Jacob, Tohaneanu, Mihai

论文摘要

通过考虑两个末端的扭曲产物歧管,我们证明了当公制陷阱与边界相互作用时可能发生的分叉。在这个高度对称的示例中,随着边界通过被困的集合,一个从非捕获的场景中进行的,其中无损局部能量估计值可用于波方程到稳定的捕获射线的情况,在这些情况下,除了丢失的对数衰减量以外,所有其他均已丢失。

By considering a two ended warped product manifold, we demonstrate a bifurcation that can occur when metric trapping interacts with a boundary. In this highly symmetric example, as the boundary passes through the trapped set, one goes from a nontrapping scenario where lossless local energy estimates are available for the wave equation to the case of stably trapped rays where all but a logarithmic amount of decay is lost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源