论文标题

减轻纳米级孔隙度对Si热电功率因子的影响

Mitigating the Effect of Nanoscale Porosity on Thermoelectric Power Factor of Si

论文作者

Hosseini, S. Aria, Romano, Giuseppe, Greaney, P. Alex

论文摘要

在热电材料中添加孔隙率可以通过降低导热率来显着提高功绩ZT的数字。不幸的是,孔隙率也不利于功绩ZT图的分子中的热电功率因子。在此手稿中,我们得出了通过微调载体浓度并通过明智的孔径和形状设计来恢复纳米多孔SI中电性能的策略,从而提供了能量选择性电子滤波。在这项研究中,我们认为磷掺杂的硅含有离散的孔,这些孔子是球体,气缸,立方体或三角形棱镜。将这些孔的作用与具有圆形,正方形和三角形横截面形状的扩展孔和垂直于电流的无限长度进行比较。半经典的玻尔兹曼传输方程用于建模SI热电功率因数。该模型揭示了三个关键的结果:Cutic Pores发生了Seebeck系数中最大的增强。在低载体浓度($ <10^{20} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3} $)下,高载体浓度约为60%,高载体人口的特征长度约为$ \ sim 1 \ \ \ mathrm {nm {nm} $,分数改善约为15%。为了在室温下获得最佳的能量过滤效果,纳米多孔SI需要掺杂到更高的载体浓度,而不是对散装SI的最佳效果。最后,在$ n $ type si热电学中,可以用纳米级孔隙率产生的电子滤波效果明显低于理想的滤波效果。然而,可以获得的Seebeck系数的增强功能足以抵消孔隙率引起的电导率的降低。

The addition of porosity to thermoelectric materials can significantly increase the figure of merit, ZT, by reducing the thermal conductivity. Unfortunately, porosity is also detrimental to the thermoelectric power factor in the numerator of the figure of merit ZT. In this manuscript we derive strategies to recoup electrical performance in nanoporous Si by fine tuning the carrier concentration and through judicious design of the pore size and shape so as to provide energy selective electron filtering. In this study, we considered phosphorus doped silicon containing discrete pores that are either spheres, cylinders, cubes, or triangular prisms. The effects from these pores are compared with those from extended pores with circular, square and triangular cross sectional shape, and infinite length perpendicular to the electrical current. A semiclassical Boltzmann transport equation is used to model Si thermoelectric power factor. This model reveals three key results: The largest enhancement in Seebeck coefficient occurs with cubic pores. The fractional improvement is about 15% at low carrier concentration ($< 10^{20}\ \mathrm{1/cm^3}$) up to 60% at high carrier population with characteristic length around $\sim 1\ \mathrm{nm}$. To obtain the best energy filtering effect at room temperature, nanoporous Si needs to be doped to higher carrier concentration than is optimal for bulk Si. Finally, in $n$-type Si thermoelectrics the electron filtering effect that can be generated with nanoscale porosity is significantly lower than the ideal filtering effect; nevertheless, the enhancement in the Seebeck coefficient that can be obtained is large enough to offset the reduction in electrical conductivity caused by porosity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源