论文标题

多重性和plancherel公式,用于非等级Hermitian矩阵的空间

Multiplicities and Plancherel formula for the space of nondegenerate Hermitian matrices

论文作者

Beuzart-Plessis, Raphaël

论文摘要

本文包含两个关于光谱分解的结果,从广义上讲,在特征零的局部领域,非等级遗传学矩阵的空间。第一个是相关的$ l^2 $空间的明确平行分解,因此在这种情况下确认了sakellaridis-venkatesh的猜想。第二个是在$ p $ - adiC的情况下的多个通用表示的公式,该案例扩展了Feigon-lapid-offen的先前工作。这两个结果均根据Arthur-Clozel的二次局部基础变化表示,这些证明基于Jacquet和Ye先前研究的两个相对痕量公式的局部类似物,并称为(相对)Kuznetsov痕量公式。

This paper contains two results concerning the spectral decomposition, in a broad sense, of the space of nondegenerate Hermitian matrices over a local field of characteristic zero. The first is an explicit Plancherel decomposition of the associated $L^2$ space thus confirming a conjecture of Sakellaridis-Venkatesh in this particular case. The second is a formula for the multiplicities of generic representations in the $p$-adic case that extends previous work of Feigon-Lapid-Offen. Both results are stated in terms of Arthur-Clozel's quadratic local base-change and the proofs are based on local analogs of two relative trace formulas previously studied by Jacquet and Ye and known as (relative) Kuznetsov trace formulas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源