论文标题
在支撑限制下,运动模型和合规性调制
Kinematic Modeling and Compliance Modulation of Redundant Manipulators Under Bracing Constraints
论文作者
论文摘要
由于被动安全原因,理想情况下,协作机器人应使用低扭矩执行器。但是,某些应用要求这些协作机器人深入到狭窄的空间,同时协助人类操作员进行身体要求的任务。在本文中,我们考虑使用原位协作机器人(ISCR),这些机器人(ISCR)平衡了被动安全性指示低扭矩驱动的需求以及进入深处的狭窄空间的需求。我们认为对支撑的明智使用是对这些相互矛盾的需求的可能解决方案,并提出了一个建模框架,该框架考虑了受约束的运动学以及支撑对最终效力遵从性的影响。然后,我们定义一个冗余分辨率框架,该框架可以最大程度地减少最终效果的方向依从性,同时最大程度地提高最终效果敏捷性。运动学模拟结果表明,冗余策略成功地降低了依从性并改善运动学调节,同时满足了支撑任务所施加的约束。此建模框架的应用可以支持对选择位置选择的未来研究,并支持在支撑约束下对ISCR进行协作控制的入学控制框架的形成。这样的机器人将来可以通过减少造成肌肉骨骼损伤的生理负担来使工人受益。
Collaborative robots should ideally use low torque actuators for passive safety reasons. However, some applications require these collaborative robots to reach deep into confined spaces while assisting a human operator in physically demanding tasks. In this paper, we consider the use of in-situ collaborative robots (ISCRs) that balance the conflicting demands of passive safety dictating low torque actuation and the need to reach into deep confined spaces. We consider the judicious use of bracing as a possible solution to these conflicting demands and present a modeling framework that takes into account the constrained kinematics and the effect of bracing on the end-effector compliance. We then define a redundancy resolution framework that minimizes the directional compliance of the end-effector while maximizing end-effector dexterity. Kinematic simulation results show that the redundancy resolution strategy successfully decreases compliance and improves kinematic conditioning while satisfying the constraints imposed by the bracing task. Applications of this modeling framework can support future research on the choice of bracing locations and support the formation of an admittance control framework for collaborative control of ISCRs under bracing constraints. Such robots can benefit workers in the future by reducing the physiological burdens that contribute to musculoskeletal injury.