论文标题

空间维度对流体湍流模型的影响

Effect of spatial dimension on a model of fluid turbulence

论文作者

Clark, Daniel, Ho, Richard, Berera, Arjun

论文摘要

对$ d $维涡流抑制的准正常马尔可维亚方程的数值研究进行了研究,以研究对均质各向同性流体湍流的空间维度的依赖性。结构函数与能量和传递光谱之间的关系是针对$ d $维情况得出的。此外,得出了$ d $二维的递送类似物的方程式,并与速度衍生物偏斜相关。比较与最近的四个直接直接数值模拟结果进行了比较。测得的能量光谱显示出放大的瓶颈效应,随着尺寸的增加,非线性能量转移的峰值变化峰值。这些结果与在较高维度下的前向能传递增加一致,这进一步证明了较大的渐近耗散率随着维度增长的测量。与速度衍生物偏度有关的腹膜生产项可在五个维度左右达到最大值,并且在无限维度的极限下可能达到零,从而提出了有关此极限湍流性质的有趣问题。

A numerical study of the $d$-dimensional Eddy Damped Quasi-Normal Markovian equations is performed to investigate the dependence on spatial dimension of homogeneous isotropic fluid turbulence. Relationships between structure functions and energy and transfer spectra are derived for the $d$-dimensional case. Additionally, an equation for the $d$-dimensional enstrophy analogue is derived and related to the velocity derivative skewness. Comparisons are made to recent four dimensional direct numerical simulation results. Measured energy spectra show a magnified bottleneck effect which grows with dimension whilst transfer spectra show a varying peak in the non-linear energy transfer as the dimension is increased. These results are consistent with an increased forward energy transfer at higher dimensions, further evidenced by measurements of a larger asymptotic dissipation rate with growing dimension. The enstrophy production term, related to the velocity derivative skewness, is seen to reach a maximum at around five dimensions and may reach zero in the limit of infinite dimensions, raising interesting questions about the nature of turbulence in this limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源