论文标题

使用加权近似Fekete点的多项式混乱的不确定性定量和灵敏度分析的有效抽样

Efficient sampling for polynomial chaos-based uncertainty quantification and sensitivity analysis using weighted approximate Fekete points

论文作者

Burk, Kyle M., Narayan, Akil, Orr, Joseph A.

论文摘要

在开发患者特异性的生理模型时,执行不确定性定量(UQ)和灵敏度分析(SA)至关重要,因为它可以量化模型输出不确定性并估算每个模型的输入参数对数学模型的影响。通过提供此信息,UQ和SA充当诊断工具,以评估模型保真度并将模型特征与专业知识和现实世界观察进行比较。计算效率是UQ和SA方法的重要组成部分,因此优化是研究的活跃领域。在这项工作中,我们研究了一种新的有效采样方法,用于最小二乘多项式近似,加权近似fekete点(WAFP)。我们通过在心血管模型的随机分析中证明其实用性来分析该方法的性能,该模型估计了羟红质蛋白饱和反应的变化。使用WAFP的多项式混乱(PC)扩展产生的结果类似于量化不确定性并识别最有影响力的模型输入(包括输入相互作用)时,当建模氧杂脂蛋白饱和度时,使用WAFP的PC扩展是更有效的。这些发现表明,使用基于WAFP的PC扩展来量化不确定性并分析氧气血红蛋白解离反应模型的敏感性的有用性。应用这些技术可以帮助分析其他相关模型的忠诚度,以准备临床应用。

Performing uncertainty quantification (UQ) and sensitivity analysis (SA) is vital when developing a patient-specific physiological model because it can quantify model output uncertainty and estimate the effect of each of the model's input parameters on the mathematical model. By providing this information, UQ and SA act as diagnostic tools to evaluate model fidelity and compare model characteristics with expert knowledge and real world observation. Computational efficiency is an important part of UQ and SA methods and thus optimization is an active area of research. In this work, we investigate a new efficient sampling method for least-squares polynomial approximation, weighted approximate Fekete points (WAFP). We analyze the performance of this method by demonstrating its utility in stochastic analysis of a cardiovascular model that estimates changes in oxyhemoglobin saturation response. Polynomial chaos (PC) expansion using WAFP produced results similar to the more standard Monte Carlo in quantifying uncertainty and identifying the most influential model inputs (including input interactions) when modeling oxyhemoglobin saturation, PC expansion using WAFP was far more efficient. These findings show the usefulness of using WAFP based PC expansion to quantify uncertainty and analyze sensitivity of a oxyhemoglobin dissociation response model. Applying these techniques could help analyze the fidelity of other relevant models in preparation for clinical application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源