论文标题

气候:通过归一流的流量,无监督的气候变量统计降低

ClimAlign: Unsupervised statistical downscaling of climate variables via normalizing flows

论文作者

Groenke, Brian, Madaus, Luke, Monteleoni, Claire

论文摘要

降尺度是气候科学和气象学中的具有里程碑意义的任务,在气候科学和气象学中,目标是使用粗尺度,时空数据来推断更细的尺度值。统计降尺度旨在使用从现有的缩放值数据集收集的统计模式近似此任务,通常是从观测值或物理模型获得的。在这项工作中,我们调查了深层变量学习对统计降低降低任务的应用。我们提出了《气候》,这是一种新的方法,用于使用最近在归一化流量以进行变异推理的工作中的工作适应。我们在两个数据集上使用几个不同的指标评估了方法的生存能力,这些指标包括在低(1度/经度)和高(1/4和1/8度)分辨率的每日温度和降水值组成。我们表明,我们的方法可实现可比较的预测性能与现有的监督统计缩减方法,同时允许在高分和低分辨率空间场上的关节分布中同时进行条件和无条件采样。我们在GitHub上提供了我们方法的公开访问实现以及用于比较的基准。

Downscaling is a landmark task in climate science and meteorology in which the goal is to use coarse scale, spatio-temporal data to infer values at finer scales. Statistical downscaling aims to approximate this task using statistical patterns gleaned from an existing dataset of downscaled values, often obtained from observations or physical models. In this work, we investigate the application of deep latent variable learning to the task of statistical downscaling. We present ClimAlign, a novel method for unsupervised, generative downscaling using adaptations of recent work in normalizing flows for variational inference. We evaluate the viability of our method using several different metrics on two datasets consisting of daily temperature and precipitation values gridded at low (1 degree latitude/longitude) and high (1/4 and 1/8 degree) resolutions. We show that our method achieves comparable predictive performance to existing supervised statistical downscaling methods while simultaneously allowing for both conditional and unconditional sampling from the joint distribution over high and low resolution spatial fields. We provide publicly accessible implementations of our method, as well as the baselines used for comparison, on GitHub.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源