论文标题

给定对象姿势的离散分布的杂物中安全有效的采摘路径

Safe and Effective Picking Paths in Clutter given Discrete Distributions of Object Poses

论文作者

Wang, Rui, Mitash, Chaitanya, Lu, Shiyang, Boehm, Daniel, Bekris, Kostas E.

论文摘要

在存在其他物体的情况下选择项目可能会具有挑战性,因为它涉及遮挡和部分视图。给定对象模型,一种方法是执行对象姿势估计,并使用每个对象最有可能的候选姿势在没有碰撞的情况下选择目标。但是,这种方法忽略了有关目标和周围物体姿势的感知过程的不确定性。这项工作首先提出了6D姿势估计的感知过程,该过程返回场景中对象姿势的离散分布。然后,提出了开环规划管道,以返回安全有效的解决方案,以移动机器人臂进行拾取,该解决方案(a)最大程度地减少了与阻塞物体碰撞的可能性; (b)最大化达到目标项目的概率。规划框架将挑战构成最小约束删除(MCR)问题的随机变体。鉴于在不同情况下模拟和真实数据,该方法的有效性得到了验证。该实验表明,在安全执行方面,考虑感知过程的不确定性的重要性。结果还表明,该方法比保守的MCR方法更有效,无论报告的不确定性如何,避免所有可能的对象都会构成。

Picking an item in the presence of other objects can be challenging as it involves occlusions and partial views. Given object models, one approach is to perform object pose estimation and use the most likely candidate pose per object to pick the target without collisions. This approach, however, ignores the uncertainty of the perception process both regarding the target's and the surrounding objects' poses. This work proposes first a perception process for 6D pose estimation, which returns a discrete distribution of object poses in a scene. Then, an open-loop planning pipeline is proposed to return safe and effective solutions for moving a robotic arm to pick, which (a) minimizes the probability of collision with the obstructing objects; and (b) maximizes the probability of reaching the target item. The planning framework models the challenge as a stochastic variant of the Minimum Constraint Removal (MCR) problem. The effectiveness of the methodology is verified given both simulated and real data in different scenarios. The experiments demonstrate the importance of considering the uncertainty of the perception process in terms of safe execution. The results also show that the methodology is more effective than conservative MCR approaches, which avoid all possible object poses regardless of the reported uncertainty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源