论文标题

使用高斯流程的多代理安全计划

Multi-Agent Safe Planning with Gaussian Processes

论文作者

Zhu, Zheqing, Bıyık, Erdem, Sadigh, Dorsa

论文摘要

多代理安全系统已成为越来越重要的研究领域,因为我们现在可以轻松地拥有多个AI驱动的系统一起运行。在这种情况下,我们需要确保不仅要确保每个人的安全,而且还要确保整体系统的安全。在本文中,我们介绍了一种新型的多试验安全学习算法,该算法在环境中有多种不同的代理时可以分散的安全导航。该算法对其他代理进行了温和的假设,并以分散的方式接受了训练,即对其他代理商的政策的先验知识很少。实验表明,在优化各种目标时,我们的算法在运行其他算法的机器人方面表现良好。

Multi-agent safe systems have become an increasingly important area of study as we can now easily have multiple AI-powered systems operating together. In such settings, we need to ensure the safety of not only each individual agent, but also the overall system. In this paper, we introduce a novel multi-agent safe learning algorithm that enables decentralized safe navigation when there are multiple different agents in the environment. This algorithm makes mild assumptions about other agents and is trained in a decentralized fashion, i.e. with very little prior knowledge about other agents' policies. Experiments show our algorithm performs well with the robots running other algorithms when optimizing various objectives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源