论文标题

残留的时间域边界元素方法的后验错误估计

A residual a posteriori error estimate for the time-domain boundary element method

论文作者

Gimperlein, Heiko, Oezdemir, Ceyhun, Stark, David, Stephan, Ernst P.

论文摘要

本文研究了剩余的A后验误差估计和自适应网格改进,用于波动方程的时间依赖性边界元素方法。我们获得了对大量离散化的Dirichlet和声学边界条件的可靠估计。显示了误差估计的效率,以自然地离散低阶。数值示例证实了理论结果。 3D中产生的自适应网状细化程序恢复了以椭圆问题已知的自适应收敛速率。

This article investigates residual a posteriori error estimates and adaptive mesh refinements for time-dependent boundary element methods for the wave equation. We obtain reliable estimates for Dirichlet and acoustic boundary conditions which hold for a large class of discretizations. Efficiency of the error estimate is shown for a natural discretization of low order. Numerical examples confirm the theoretical results. The resulting adaptive mesh refinement procedures in 3d recover the adaptive convergence rates known for elliptic problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源