论文标题

Eulerian系列,Zeta功能和分区的算术

Eulerian series, zeta functions and the arithmetic of partitions

论文作者

Schneider, Robert

论文摘要

在此博士学位论文(2018年,埃默里大学)我们在数字理论的添加和乘法分支的交集中证明了定理,从分区理论,$ q $ series,代数,模块化形式和分析数理论中汇集了思想。我们提出了一个自然的整数分区的乘法理论(通常在添加方面被考虑),并探索新类别的理论Zeta函数和Dirichlet系列的新类别 - 以及“ Eulerian” $ Q $ -HYPHENEMETRICRICTRICTRICTRICTRICTRICTRICTRICTRICTRICTRICTRICTRICTRICTRICTRICTRICTRICTRICTRICTRICTION系列 - 享受许多有趣的关系。我们发现经典数量理论的许多定理和分析是非常通用的组合结构定律的特殊情况。在我们的应用中,我们证明了Bloch-Okounkov的$ Q $ - 支架的显式公式,Bloch-Okounkov是来自与准模型形式相关的统计物理学的分区理论操作员;我们证明了整数某些子集的算术密度的分区公式,给出了$ q $ series公式以评估Riemann Zeta功能;我们研究了与量子模块化形式有关的$ q $ - 流行地几个时几个,以及Kontsevich的“奇怪”功能;我们还展示了Ramanujan的奇数模拟theta函数(更广泛地说是通用模拟theta功能$ g_3 $ g_3 $ gordon-mcintosh)是由jacobi Triple产品通过$ q $ $ bracket操作员的倒数产生的,也可以连接到联合仪和量子模量的单次序列型和量子模量型现象。

In this Ph.D. dissertation (2018, Emory University) we prove theorems at the intersection of the additive and multiplicative branches of number theory, bringing together ideas from partition theory, $q$-series, algebra, modular forms and analytic number theory. We present a natural multiplicative theory of integer partitions (which are usually considered in terms of addition), and explore new classes of partition-theoretic zeta functions and Dirichlet series -- as well as "Eulerian" $q$-hypergeometric series -- enjoying many interesting relations. We find a number of theorems of classical number theory and analysis arise as particular cases of extremely general combinatorial structure laws. Among our applications, we prove explicit formulas for the coefficients of the $q$-bracket of Bloch-Okounkov, a partition-theoretic operator from statistical physics related to quasi-modular forms; we prove partition formulas for arithmetic densities of certain subsets of the integers, giving $q$-series formulas to evaluate the Riemann zeta function; we study $q$-hypergeometric series related to quantum modular forms and the "strange" function of Kontsevich; and we show how Ramanujan's odd-order mock theta functions (and, more generally, the universal mock theta function $g_3$ of Gordon-McIntosh) arise from the reciprocal of the Jacobi triple product via the $q$-bracket operator, connecting also to unimodal sequences in combinatorics and quantum modular-like phenomena.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源