论文标题

限制对颗粒骨料中毛细管相变的影响

The Effect of Confinement on Capillary Phase Transition In Granular Aggregates

论文作者

Monfared, Siavash, Zhou, Tingtao, Andrade, Jose E., Ioannidou, Katerina, Radjai, Farhang, Ulm, Franz-Josef, Pellenq, Roland J. -M.

论文摘要

利用3D平均场晶状体气体模型,我们分析了限制对具有变化障碍的粒状聚集体中毛细血管相变的性质及其通过互换颗粒和孔获得的逆多孔结构的影响。令人惊讶的是,与多孔结构相对的颗粒骨料中发现,限制效应不那么明显。我们表明,可以通过表面表面相关长度与通过流体结构域的连接路径来理解这种差异,这表明该长度捕获了真正的约束程度。我们还发现,这些多孔材料中的液态气相变是毛细管临界温度附近的二阶性质,该温度显示为真正的临界温度,即独立于无序程度和固体基质的性质,离散或连续。根据P.G的假设,此前从有限尺寸的缩放分析中估算的关键指数表明,此过渡属于3D随机字段ISING ISING模型通用类别类别。 De Gennes,在流体固定相互作用中由局部疾病引起的潜在随机场。

Utilizing a 3D mean-field lattice-gas model, we analyze the effect of confinement on the nature of capillary phase transition in granular aggregates with varying disorder and their inverse porous structures obtained by interchanging particles and pores. Surprisingly, the confinement effects are found to be much less pronounced in granular aggregates as opposed to porous structures. We show that this discrepancy can be understood in terms of the surface-surface correlation length with a connected path through the fluid domain, suggesting that this length captures the true degree of confinement. We also find that the liquid-gas phase transition in these porous materials is of second order nature near capillary critical temperature, which is shown to represent a true critical temperature, i.e. independent of the degree of disorder and the nature of solid matrix, discrete or continuous. The critical exponents estimated here from finite-size scaling analysis suggest that this transition belongs to the 3D random field Ising model universality class as hypothesized by P.G. de Gennes, with the underlying random fields induced by local disorder in fluid-solid interactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源