论文标题
定价抵押债务义务的量子计算
Quantum Computation for Pricing the Collateralized Debt Obligations
论文作者
论文摘要
抵押债务义务(CDO)一直是最常用的结构化金融产品之一,并且在定量金融方面进行了深入研究。通过将资产池设置为不同的分支,它有效地奏效并重新分配了信用风险,并有回报以满足不同批量投资者的风险偏好。通常使用各种类型的配置模型,用于定价CDO,需要蒙特卡洛模拟以获取其数值解决方案。在这里,我们实现了两个典型的CDO模型,即单因素高斯模型模型和正常的逆高斯copula模型,并且通过应用条件独立方法,我们设法在量子电路中加载了每个分布模型。然后,我们将量子振幅估计作为蒙特卡洛模拟的替代品进行CDO定价。我们使用IBM Qiskit演示了量子计算结果。我们的工作解决了金融工具定价中的一项有用任务,从而大大扩大了金融中量子计算的应用范围。
Collateralized debt obligation (CDO) has been one of the most commonly used structured financial products and is intensively studied in quantitative finance. By setting the asset pool into different tranches, it effectively works out and redistributes credit risks and returns to meet the risk preferences for different tranche investors. The copula models of various kinds are normally used for pricing CDOs, and the Monte Carlo simulations are required to get their numerical solution. Here we implement two typical CDO models, the single-factor Gaussian copula model and Normal Inverse Gaussian copula model, and by applying the conditional independence approach, we manage to load each model of distribution in quantum circuits. We then apply quantum amplitude estimation as an alternative to Monte Carlo simulation for CDO pricing. We demonstrate the quantum computation results using IBM Qiskit. Our work addresses a useful task in finance instrument pricing, significantly broadening the application scope for quantum computing in finance.