论文标题

可逆神经BRDF用于对象逆渲染

Invertible Neural BRDF for Object Inverse Rendering

论文作者

Chen, Zhe, Nobuhara, Shohei, Nishino, Ko

论文摘要

我们介绍了一种新型的基于神经网络的BRDF模型和一个用于对象逆渲染的贝叶斯框架,即,从已知几何形状的对象的单个图像中对反射率和自然照明的关节估计。 BRDF用可逆的神经网络表示,即标准化流量,它提供了高维表示的表达能力,紧凑的分析模型的计算简单性以及现实世界中BRDF的物理合理性。我们通过调节该模型来提取现实世界反射率的潜在空间,这直接导致了强大的反射率。我们将此模型称为可逆神经BRDF模型(IBRDF)。我们还通过利用深神经网络的结构偏见来设计深度照明。通过将这种新型的BRDF模型和反射率和照明先验整合在地图估计公式中,我们表明该关节估计可以通过随机梯度下降有效地计算出来。我们在实验中验证了大量测量数据的可逆神经BRDF模型的准确性,并证明了其在许多合成和真实图像上的对象逆渲染中的使用。结果显示了深层神经网络可以帮助解决挑战性辐射逆问题的新方法。

We introduce a novel neural network-based BRDF model and a Bayesian framework for object inverse rendering, i.e., joint estimation of reflectance and natural illumination from a single image of an object of known geometry. The BRDF is expressed with an invertible neural network, namely, normalizing flow, which provides the expressive power of a high-dimensional representation, computational simplicity of a compact analytical model, and physical plausibility of a real-world BRDF. We extract the latent space of real-world reflectance by conditioning this model, which directly results in a strong reflectance prior. We refer to this model as the invertible neural BRDF model (iBRDF). We also devise a deep illumination prior by leveraging the structural bias of deep neural networks. By integrating this novel BRDF model and reflectance and illumination priors in a MAP estimation formulation, we show that this joint estimation can be computed efficiently with stochastic gradient descent. We experimentally validate the accuracy of the invertible neural BRDF model on a large number of measured data and demonstrate its use in object inverse rendering on a number of synthetic and real images. The results show new ways in which deep neural networks can help solve challenging radiometric inverse problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源