论文标题

通过多维相交数字来表征异常的假循环结合方案

A characterization of exceptional pseudocyclic association schemes by multidimensional intersection numbers

论文作者

Chen, Gang, He, Jiawei, Ponomarenko, Ilia, Vasil'ev, Andrey

论文摘要

$ \ frac {3} {2} $的最新分类 - 及时排列群体使我们拥有三个无限的群体家庭,这些群体既不是$ 2 $ thransitive,也不是Frobenius,也不是一维仿度。前两个家庭的组对应于$ {\ mathrm {psl}}(2,q)$和$ {\ mathrm {pγl}}}(2,q)的特殊动作,而第三家族的$是$ {\ mathrm {agl {agl agl} $ in Cossisation in Conseict in Conseipt in Castemant in Conseipt in n 196(2,Q),而第三个家庭的$是$ {2,q)在每个家族中,每个家庭都是伪细胞。事实证明,除三种特殊情况外,这些特殊的伪细胞方案中的每一个都被其$ 3 $维的交叉数字的张量来表征同构。

Recent classification of $\frac{3}{2}$-transitive permutation groups leaves us with three infinite families of groups which are neither $2$-transitive, nor Frobenius, nor one-dimensional affine. The groups of the first two families correspond to special actions of ${\mathrm{PSL}}(2,q)$ and ${\mathrm{PΓL}}(2,q),$ whereas those of the third family are the affine solvable subgroups of ${\mathrm{AGL}}(2,q)$ found by D. Passman in 1967. The association schemes of the groups in each of these families are known to be pseudocyclic. It is proved that apart from three particular cases, each of these exceptional pseudocyclic schemes is characterized up to isomorphism by the tensor of its $3$-dimensional intersection numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源