论文标题
Viterbo对凸形旋转域的能力猜想以及$ 1 $ - unconditional凸及其polar的产物
The Viterbo's capacity conjectures for convex toric domains and the product of a $1$-unconditional convex body and its polar
论文作者
论文摘要
在本说明中,我们表明,强烈的Viterbo猜想在任何凸形旋转域上都符合,并且Viterbo的体积容量构构构成了$ 1 $ - unconditional convex $ a \ subset \ subbb \ mathbb {r}^{n} $ and polar的产品。我们还为$ L_P $ -BALLS的对称Mahler猜想提供了直接的演算证明。
In this note, we show that the strong Viterbo conjecture holds true on any convex toric domain, and that the Viterbo's volume-capacity conjecture holds for the product of a $1$-unconditional convex body $A\subset\mathbb{R}^{n}$ and its polar. We also give a direct calculus proof of the symmetric Mahler conjecture for $l_p$-balls.