论文标题

三维对称张量的共同积极性

Copositivity of Three-Dimensional Symmetric Tensors

论文作者

Qi, Liqun, Song, Yisheng, Zhang, Xinzhen

论文摘要

在本文中,我们寻求可以分析可检查的必要条件,以实现三维对称张量的共同阳性。我们首先表明,对于一般的三阶三维对称张量,这意味着解决四分之一方程和一些二次方程。所有这些都可以通过分析解决。因此,我们提出了一种分析方法来检查三阶三维对称张量的三阶的共阳性。然后,我们考虑了$ \ mathbb {z} _3 $标量暗物质的真空稳定性模型。这是一个特殊的第四阶三维对称张量。我们表明,通过使用Ulrich和Watson在1994年给出的结果,可以给出分析表达的该模型的必要条件。

In this paper, we seek analytically checkable necessary and sufficient condition for copositivity of a three-dimensional symmetric tensor. We first show that for a general third order three-dimensional symmetric tensor, this means to solve a quartic equation and some quadratic equations. All of them can be solved analytically. Thus, we present an analytical way to check copositivity of a third order three dimensional symmetric tensor. Then, we consider a model of vacuum stability for $\mathbb{Z}_3$ scalar dark matter. This is a special fourth order three-dimensional symmetric tensor. We show that an analytically expressed necessary and sufficient condition for this model bounded from below can be given, by using a result given by Ulrich and Watson in 1994.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源