论文标题
对银河系紧凑型二元中子星人群进行建模并研究双脉冲星系
Modeling the Galactic Compact Binary Neutron Star Population and Studying the Double Pulsar System
论文作者
论文摘要
在本文中,我们估计引力波观测值可见的不同类别的BNS系统的人群。鉴于在PULSAR无线电调查中没有发现超紧凑的BNS系统,因此我们将95 \%的信心上限$ \ sim $ 850和$ \ sim $ 1100超紧凑型中子星 - 白矮人和双中性之星(DNS)系统分别朝向地球。我们表明,在当前所有无线电脉冲星调查中,Arecibo Radio Telescope上的调查具有检测超紧凑型BNS系统的最佳机会。我们还表明,采用$ t _ {\ rm int} \ sim 1 $ 〜min的调查集成时间将最大化信噪比,因此,检测超紧凑型BNS系统的概率。同样,我们使用九个观察到的DNS系统的样本来得出$ \ Mathcal {r} _ {\ rm mw} = 37^{+24} _ { - 11} $ 〜myr $^myr $^{ - 1} $的银河系DNS合并率。将此速率推断到Ligo的可观察体积,我们得出合并检测率为$ \ Mathcal {r} = 1.9^{+1.2} _ { - 0.6} \ times \ left(d _ {\ rm rm r}/100 $ d _ {\ rm r} $是Ligo的范围距离。该速率与使用Ligo观察到的DNS合并得出的速率一致。最后,我们测量了DNS J0737--3039系统中旧毫秒脉冲星A的旋转感,并发现它相对于其轨道旋转了旋转。这是对脉冲星的旋转感以及对脉冲星旋转灯塔模型的直接测量。该结果证实了旋转角动量向量与轨道角动量紧密对齐,这表明超新星产生第二个出生的Pulsar J0737--3039b的踢很小。
In this dissertation, we estimate the population of different classes of BNS systems that are visible to gravitational-wave observatories. Given that no ultra-compact BNS systems have been discovered in pulsar radio surveys, we place a 95\% confidence upper limit of $\sim$850 and $\sim$1100 ultra-compact neutron star--white dwarf and double neutron star (DNS) systems that are beaming towards the Earth, respectively. We show that among all of the current radio pulsar surveys, the ones at the Arecibo radio telescope have the best chance of detecting an ultra-compact BNS system. We also show that adopting a survey integration time of $t_{\rm int} \sim 1$~min will maximize the signal-to-noise ratio, and thus, the probability of detecting an ultra-compact BNS system. Similarly, we use the sample of nine observed DNS systems to derive a Galactic DNS merger rate of $\mathcal{R}_{\rm MW} = 37^{+24}_{-11}$~Myr$^{-1}$, where the errors represent 90\% confidence intervals. Extrapolating this rate to the observable volume for LIGO, we derive a merger detection rate of $\mathcal{R} = 1.9^{+1.2}_{-0.6} \times \left(D_{\rm r}/100 \ \rm Mpc \right)^3 \rm yr^{-1}$, where $D_{\rm r}$ is the range distance for LIGO. This rate is consistent with that derived using the DNS mergers observed by LIGO. Finally, we measure the sense of rotation of the older millisecond pulsar, pulsar A, in the DNS J0737--3039 system and find that it rotates prograde with respect to its orbit. This is the first direct measurement of the sense of rotation of a pulsar and a direct confirmation of the rotating lighthouse model for pulsars. This result confirms that the spin angular momentum vector is closely aligned with the orbital angular momentum, suggesting that kick of the supernova producing the second born pulsar J0737--3039B was small.