论文标题

使用芯片尺度检测器有效且低倒数的量子测量

Efficient and Low-Backaction Quantum Measurement Using a Chip-Scale Detector

论文作者

Rosenthal, Eric I., Schneider, Christian M. F., Malnou, Maxime, Zhao, Ziyi, Leditzky, Felix, Chapman, Benjamin J., Wustmann, Waltraut, Ma, Xizheng, Palken, Daniel A., Zanner, Maximilian F., Vale, Leila R., Hilton, Gene C., Gao, Jiansong, Smith, Graeme, Kirchmair, Gerhard, Lehnert, K. W.

论文摘要

超导量子位是可扩展量子计算和量子误差校正的领先平台。该平台的一个功能是能够比量子反应时间更快地执行投影测量订单。通过使用量子限制的参数放大器与铁氧体循环器 - 磁性设备相结合,从而可以通过放大器向后进行噪声和反熔,可以实现此类测量。由于这些非晶状体元素的性能有限,并且不容易集成在芯片上,因此用可扩展的替代方案替换它们是一个长期的目标。在这里,我们通过使用超导开关来控制量子和放大器之间的耦合来证明解决此问题的解决方案。这样做,我们使用单个的芯片尺度设备测量了transmon量子,以提供参数放大和从大部分放大器背部的隔离。该测量也很快,高富度,并且具有70%的效率,可与在任何超导量子测量值中报道的最佳效率相当。因此,这项工作构成了一个高质量的平台,用于可扩展的超导量子位。

Superconducting qubits are a leading platform for scalable quantum computing and quantum error correction. One feature of this platform is the ability to perform projective measurements orders of magnitude more quickly than qubit decoherence times. Such measurements are enabled by the use of quantum-limited parametric amplifiers in conjunction with ferrite circulators - magnetic devices which provide isolation from noise and decoherence due to amplifier backaction. Because these non-reciprocal elements have limited performance and are not easily integrated on-chip, it has been a longstanding goal to replace them with a scalable alternative. Here, we demonstrate a solution to this problem by using a superconducting switch to control the coupling between a qubit and amplifier. Doing so, we measure a transmon qubit using a single, chip-scale device to provide both parametric amplification and isolation from the bulk of amplifier backaction. This measurement is also fast, high fidelity, and has 70% efficiency, comparable to the best that has been reported in any superconducting qubit measurement. As such, this work constitutes a high-quality platform for the scalable measurement of superconducting qubits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源