论文标题

Semeval-2020任务8:备忘录分析 - 视觉语言隐喻!

SemEval-2020 Task 8: Memotion Analysis -- The Visuo-Lingual Metaphor!

论文作者

Sharma, Chhavi, Bhageria, Deepesh, Scott, William, PYKL, Srinivas, Das, Amitava, Chakraborty, Tanmoy, Pulabaigari, Viswanath, Gamback, Bjorn

论文摘要

社交媒体的信息包括各种方式,例如文本,视觉和音频。 NLP和计算机视觉社区通常只利用一种孤立的突出方式来研究社交媒体。但是,互联网模因的计算处理需要一种混合方法。诸如Facebook,Instagram和Twiter等社交媒体平台上互联网模因的普遍存在进一步表明,我们不能再忽略此类多模式内容了。据我们所知,对模因情绪分析的关注不多。该提案的目的是将研究界的注意力引起互联网模因的自动处理。任务备忘录分析发布了大约10K注释的模因,并带有人类宣传的标签,即情感(正,负,中性),情绪类型(讽刺,有趣,令人反感,动机)及其相应的强度。挑战包括三个子任务:对模因的情感(正面,负面和中立)分析,整体情感(幽默,讽刺,令人反感和动机)模因分类以及模因情感的强度分类。获得的最佳性能是三个子任务中的每个子任务分别为0.35、0.51和0.32。

Information on social media comprises of various modalities such as textual, visual and audio. NLP and Computer Vision communities often leverage only one prominent modality in isolation to study social media. However, the computational processing of Internet memes needs a hybrid approach. The growing ubiquity of Internet memes on social media platforms such as Facebook, Instagram, and Twiter further suggests that we can not ignore such multimodal content anymore. To the best of our knowledge, there is not much attention towards meme emotion analysis. The objective of this proposal is to bring the attention of the research community towards the automatic processing of Internet memes. The task Memotion analysis released approx 10K annotated memes, with human-annotated labels namely sentiment (positive, negative, neutral), type of emotion (sarcastic, funny, offensive, motivation) and their corresponding intensity. The challenge consisted of three subtasks: sentiment (positive, negative, and neutral) analysis of memes, overall emotion (humour, sarcasm, offensive, and motivational) classification of memes, and classifying intensity of meme emotion. The best performances achieved were F1 (macro average) scores of 0.35, 0.51 and 0.32, respectively for each of the three subtasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源