论文标题

通过正则照明优化和抑制深度噪声的低光海洋图像增强

Low-Light Maritime Image Enhancement with Regularized Illumination Optimization and Deep Noise Suppression

论文作者

Guo, Yu, Lu, Yuxu, Liu, Ryan Wen, Yang, Meifang, Chui, Kwok Tai

论文摘要

在弱光成像条件下捕获的海上图像很容易遭受较低的可见性和意外噪音的影响,从而对海上交通监督和管理产生负面影响。为了促进成像性能,有必要从退化的低光图像中恢复重要的视觉信息。在本文中,我们建议通过正规化照明优化和深层抑制作用来增强低光图像。特别地,提出了将L0-确定梯度稀疏性与结构感知正规化相结合的混合正规化变异模型,以完善最初使用Max-RGB估算的粗糙照明图。然后引入自适应伽马校正方法以调整精制照明图。基于Itinex理论的假设,引入了基于指导滤波器的细节增强方法来优化反射图。调整后的照明和优化的反射图最终被合并,以生成增强的海上图像。为了抑制不需要的噪声对成像性能的影响,进一步引入了基于学习的盲目denoising框架,以促进增强图像的视觉质量。特别是,该框架由两个子网络组成,即分别用于噪声水平估计和非盲噪声的E-NET和D-NET。我们的图像增强方法的主要好处是,它充分利用了正规化的照明优化和深度盲目的降级。已经对合成和现实的海上图像进行了全面的实验,以将我们所提出的方法与几种最新成像方法进行比较。实验结果表明了其在定量和定性评估方面的出色表现。

Maritime images captured under low-light imaging condition easily suffer from low visibility and unexpected noise, leading to negative effects on maritime traffic supervision and management. To promote imaging performance, it is necessary to restore the important visual information from degraded low-light images. In this paper, we propose to enhance the low-light images through regularized illumination optimization and deep noise suppression. In particular, a hybrid regularized variational model, which combines L0-norm gradient sparsity prior with structure-aware regularization, is presented to refine the coarse illumination map originally estimated using Max-RGB. The adaptive gamma correction method is then introduced to adjust the refined illumination map. Based on the assumption of Retinex theory, a guided filter-based detail boosting method is introduced to optimize the reflection map. The adjusted illumination and optimized reflection maps are finally combined to generate the enhanced maritime images. To suppress the effect of unwanted noise on imaging performance, a deep learning-based blind denoising framework is further introduced to promote the visual quality of enhanced image. In particular, this framework is composed of two sub-networks, i.e., E-Net and D-Net adopted for noise level estimation and non-blind noise reduction, respectively. The main benefit of our image enhancement method is that it takes full advantage of the regularized illumination optimization and deep blind denoising. Comprehensive experiments have been conducted on both synthetic and realistic maritime images to compare our proposed method with several state-of-the-art imaging methods. Experimental results have illustrated its superior performance in terms of both quantitative and qualitative evaluations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源