论文标题
单位扩展和微分方程(Bloch-Vlasenko之后)
Unipotent extensions and differential equations (after Bloch-Vlasenko)
论文作者
论文摘要
S. Bloch和M. Vlasenko最近引入了\ emph {动机γ函数}的理论,由霍迪格结构的几何变化的梅林变换时期给出,它们与单个变体的某些单位扩展的单差和渐近行为联系起来。在这里,我们进一步研究了VHS的这些伽马功能以及相关的\ emph {apéry和Frobenius不变性},并建立了与动机共同体学和解决方案的关系,对不均匀的Picard-fuchs方程。
S. Bloch and M. Vlasenko recently introduced a theory of \emph{motivic Gamma functions}, given by periods of the Mellin transform of a geometric variation of Hodge structure, which they tie to the monodromy and asymptotic behavior of certain unipotent extensions of the variation. Here we further examine these Gamma functions and the related \emph{Apéry and Frobenius invariants} of a VHS, and establish a relationship to motivic cohomology and solutions to inhomogeneous Picard-Fuchs equations.