论文标题

FPGA上的距离加权图神经网络,用于实时粒子重建高能物理学

Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle Reconstruction in High Energy Physics

论文作者

Iiyama, Yutaro, Cerminara, Gianluca, Gupta, Abhijay, Kieseler, Jan, Loncar, Vladimir, Pierini, Maurizio, Qasim, Shah Rukh, Rieger, Marcel, Summers, Sioni, Van Onsem, Gerrit, Wozniak, Kinga, Ngadiuba, Jennifer, Di Guglielmo, Giuseppe, Duarte, Javier, Harris, Philip, Rankin, Dylan, Jindariani, Sergo, Liu, Mia, Pedro, Kevin, Tran, Nhan, Kreinar, Edward, Wu, Zhenbin

论文摘要

图形神经网络已被证明可以在粒子物理中的几个关键任务(例如带电粒子跟踪,喷气标记和聚类)中实现出色的性能。这些网络应用的一个重要领域是基于FGPA的第一层实时数据过滤的CERN大型强子对撞机,该数据具有严格的延迟和资源约束。我们讨论如何设计距离的图形网络,这些网络可以在FPGA上使用延迟小于1 $μ\ MATHRM {S} $执行。为此,我们考虑了与粒子重建和识别相关的代表性任务,在粒子对撞机上运行的下一代热量计中。我们使用用于此目的的图形网络体系结构,并应用其他简化来匹配级别1触发系统的计算约束,包括权重量化。使用$ \ mathtt {hls4ml} $库,我们将压缩模型转换为要在FPGA上实现的固件。综合模型的性能是根据推理准确性和资源使用情况介绍的。

Graph neural networks have been shown to achieve excellent performance for several crucial tasks in particle physics, such as charged particle tracking, jet tagging, and clustering. An important domain for the application of these networks is the FGPA-based first layer of real-time data filtering at the CERN Large Hadron Collider, which has strict latency and resource constraints. We discuss how to design distance-weighted graph networks that can be executed with a latency of less than 1$μ\mathrm{s}$ on an FPGA. To do so, we consider a representative task associated to particle reconstruction and identification in a next-generation calorimeter operating at a particle collider. We use a graph network architecture developed for such purposes, and apply additional simplifications to match the computing constraints of Level-1 trigger systems, including weight quantization. Using the $\mathtt{hls4ml}$ library, we convert the compressed models into firmware to be implemented on an FPGA. Performance of the synthesized models is presented both in terms of inference accuracy and resource usage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源