论文标题
过滤器内核对近壁湍流结构的尺度能源的影响
Effect of filter kernel on scale-energetics of near-wall turbulent structures
论文作者
论文摘要
尺度间的能量通量($π^λ$)被广泛用作诊断工具,用于分析跨长度尺度($λ$)的湍流数据的能量转移。在这里,我们研究了滤波内核(锋利的光谱,高斯,框)的选择如何在恒定滤波器宽度下影响计算的能量通量。我们将空间过滤应用于湍流流量模拟数据集,并评估对$π$的本地结构的影响。虽然每个壁正常距离处的平均能通量轮廓在质量上是稳健的,但我们观察到局部$π$事件的强度和空间分布的显着差异。缓冲层中典型的流量结构(条纹,涡旋和Q事件)与瞬时$π$场中的前向/向后转移区域之间的相关性在内核类型之间存在明显不同。使用锋利的光谱内核时,互相关似乎是强烈的上游 - 对称性,但对于高斯和盒子核不对称。对于高斯和盒子内核,$π$事件倾向于沿着条纹弯曲的曲折定位,而它们则以锋利的光谱内核的条纹为中心。此外,使用锋利的光谱内核,我们观察到向后散射和流体运输的巧合($ q_1 $),而高斯和盒子内的核并未出现。但是,所有内核都可以直接向后散射$ q_1 $事件的下游。结果表明,应该谨慎对待基于尖锐的光谱尺度分离的尺度间的能量通量的解释,因为这种内核在物理空间中无本地的作用,而$π$事件本质上是局限的。我们的Python后处理工具EFLUX用于规模分离和管流中的能量通量分析是可以自由使用的,并且很容易适应其他流量配置和滤波器宽度。
Inter-scale energy fluxes, $Π^λ$, are widely used as a diagnostic tool to analyse energy transfer across length scales, $λ$, in turbulence data. Here, we investigate how the choice of filter kernel (sharp spectral, Gaussian, box) affects the computed energy fluxes at constant filter width. We apply spatial filtering to a turbulent pipe flow simulation dataset and assess the effect on the local structure of $Π$. While the mean energy flux profile at each wall-normal distance is qualitatively robust across kernels, we observe significant differences in the intensity and spatial distribution of localised $Π$ events. Correlations between typical flow structures in the buffer layer (streaks, vortices, and Q-events) and regions of forward/backward transfer in the instantaneous $Π$ field differ markedly between kernel types. Cross-correlations appear strongly upstream--downstream symmetric when using the sharp spectral kernel, but asymmetric for the Gaussian and box kernels. For the Gaussian and box kernels $Π$ events tend to localise along the inclined meander of streaks, while they are centred on top of the streaks for the sharp spectral kernel. Moreover, using the sharp spectral kernel, we observe a coincidence of backward scatter and fluid transport away from the wall ($Q_1$), which does not appear with the Gaussian and box kernels. All kernels, however, predict backward scatter directly downstream of $Q_1$ events. The results suggest that interpretations of inter-scale energy flux based on sharp spectral scale separation should be treated with caution, since such kernels act non-local in physical space, whereas $Π$ events are inherently localised. Our python post-processing tool eFlux for scale separation and energy flux analysis in pipe flows is freely available and readily adaptable to other flow configurations and filter widths.