论文标题

第一个Omega Alephs:从简单到树木的树木再到更高的步行

The first omega alephs: from simplices to trees of trees to higher walks

论文作者

Bergfalk, Jeffrey

论文摘要

当前工作的出发点是巴里·米切尔(Barry Mitchell)1972年的定理,即$ \ aleph_n $的同谋维度为$ n+1 $。我们记录了该定理的新证明和温和的加强;不过,我们更基本的目标是澄清了较高维度的无限制组合主义者的核心。在这项工作的过程中,我们描述了列出的$ω_n$的简单特征,相干的Aronszajn树的高维概括,大型索引集的关键反向系统的基础,功能的非平凡$ n $ coherent家族以及高维步行的高维步行概括。这些构造和参数完全在$ \ Mathsf {ZFC} $ Framework中进行;他们的心是一种简单,有限的效果,可以使$ c $序列复合。

The point of departure for the present work is Barry Mitchell's 1972 theorem that the cohomological dimension of $\aleph_n$ is $n+1$. We record a new proof and mild strengthening of this theorem; our more fundamental aim, though, is some clarification of the higher-dimensional infinitary combinatorics lying at its core. In the course of this work, we describe simplicial characterizations of the ordinals $ω_n$, higher-dimensional generalizations of coherent Aronszajn trees, bases for critical inverse systems over large index sets, nontrivial $n$-coherent families of functions, and higher-dimensional generalizations of portions of Todorcevic's walks technique. These constructions and arguments are undertaken entirely within a $\mathsf{ZFC}$ framework; at their heart is a simple, finitely iterable technique of compounding $C$-sequences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源