论文标题
从多体扰动理论中捕获碘化铅钙壶中的激子效应
Capturing Excitonic Effects in Lead Iodide Perovskites from Many-Body Perturbation Theory
论文作者
论文摘要
碘化铅钙钛矿吸引了对即将推出的光伏技术和光电设备的极大兴趣。因此,对电子和光学特性的准确描述,尤其是了解这类材料中的激子效应具有科学和实践意义。然而,尽管过去有几项理论研究努力,但对太阳能电池性能的关键电子参数的最准确分析,例如光学特性,有效质量,激子结合能(E $ _b $)和辐射激发式寿命仍然很少知道。在这里,我们采用基于原始原理的方法论,即。混合功能(HSE06)与自旋轨道耦合(SOC),多体扰动理论(GW,BSE),Model-BSE(MBSE),Wannier-Mott(WM)和密度功能扰动理论(DFPT)结合使用。通过采用原型模型系统。 APBI $ _3 $(A = formamidinium(FA),甲基铵(MA)和CS),对光学,电子和激子特性的理论理解进行了详尽的分析。我们表明,在HSE06计算中对精确交换参数($α$)的调整结合了SOC,其次是单次GW,而BSE在获得实验频段gap的可靠预测方面起着关键作用。我们证明MBSE方法改善了光谱W.R.T实验的特征。此外,WM方法和离子对电介质筛选(低于16 MEV)的贡献可以改善E $ _B $。我们的结果表明,直接建立频段差距过渡(RashBA拆分)可能是降低的MAPBI $ _3 $和FAPBI $ _3 $的电荷载体重组率的因素。阳离子'a'的作用在采购长寿的激子寿命方面的作用是充分理解的。该提出的方法允许设计具有量身定制的激子特性的新材料。
Lead iodide perovskites have attracted considerable interest in the upcoming photovoltaic technologies and optoelectronic devices. Therefore, an accurate theoretical description of the electronic and optical properties especially to understand the excitonic effects in this class of materials is of scientific and practical interest. However, despite several theoretical research endeavours in past, the most accurate analysis of the key electronic parameters for solar cell performance, such as optical properties, effective mass, exciton binding energy (E$_B$) and the radiative exciton lifetime are still largely unknown. Here, we employ state-of-the-art first-principles based methodologies viz. hybrid functional(HSE06) combined with spin-orbit coupling (SOC), many-body perturbation theory (GW, BSE), model-BSE (mBSE), Wannier-Mott (WM) and Density Functional Perturbation Theory (DFPT). By taking a prototypical model system viz. APbI$_3$ (A = Formamidinium (FA), methylammonium (MA), and Cs), an exhaustive analysis is presented on the theoretical understanding of the optical, electronic and excitonic properties. We show that tuning of exact exchange parameter ($α$) in HSE06 calculations incorporating SOC, followed by single shot GW, and BSE play a pivotal role in obtaining a reliable predictions for the experimental bandgap. We demonstrate that mBSE approach improves the feature of optical spectra w.r.t experiments. Furthermore, WM approach and ionic contribution to dielectric screening (below 16 meV) ameliorate the E$_B$. Our results reveal that the direct-indirect band gap transition (Rashba splitting) may be a factor responsible for the reduced charge carrier recombination rate in MAPbI$_3$ and FAPbI$_3$. The role of cation ''A'' for procuring the long-lived exciton lifetime is well understood. This proposed methodology allows to design new materials with tailored excitonic properties.