论文标题

使用全局杂形融合和特定参数化对超声检查的可靠肝纤维化评估

Reliable Liver Fibrosis Assessment from Ultrasound using Global Hetero-Image Fusion and View-Specific Parameterization

论文作者

Li, Bowen, Yan, Ke, Tai, Dar-In, Huo, Yuankai, Lu, Le, Xiao, Jing, Harrison, Adam P.

论文摘要

超声(美国)是诊断肝纤维化的关键方式。不幸的是,评估是非常主观的,可以激励自动化的方法。我们介绍了一个原则上的深卷积神经网络(CNN)工作流程,其中包含了几项创新。首先,为避免过度拟合非相关图像特征,我们强迫网络专注于感兴趣的临床区域(ROI),涵盖了肝实质和上边界。其次,我们引入了全局杂音融合(GHIF),该融合允许CNN融合研究中任何任意数量的图像的特征,从而提高了其多功能性和灵活性。最后,我们使用“基于样式”的特定视图参数化(VSP)来量身定制CNN处理,以确定肝脏的不同观点,同时使大多数参数在各个视图中保持不变。在610个患者研究(6979张图像)的数据集上进行的实验表明,我们的管道可以在曲线下的部分区域贡献大约7%和22%的改善,并分别以90%的精度召回常规分类器,从而验证了我们解决此关键问题的方法。

Ultrasound (US) is a critical modality for diagnosing liver fibrosis. Unfortunately, assessment is very subjective, motivating automated approaches. We introduce a principled deep convolutional neural network (CNN) workflow that incorporates several innovations. First, to avoid overfitting on non-relevant image features, we force the network to focus on a clinical region of interest (ROI), encompassing the liver parenchyma and upper border. Second, we introduce global heteroimage fusion (GHIF), which allows the CNN to fuse features from any arbitrary number of images in a study, increasing its versatility and flexibility. Finally, we use 'style'-based view-specific parameterization (VSP) to tailor the CNN processing for different viewpoints of the liver, while keeping the majority of parameters the same across views. Experiments on a dataset of 610 patient studies (6979 images) demonstrate that our pipeline can contribute roughly 7% and 22% improvements in partial area under the curve and recall at 90% precision, respectively, over conventional classifiers, validating our approach to this crucial problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源