论文标题
利用可解释和无监督的机器学习来解决现代X射线衍射中的大数据
Harnessing Interpretable and Unsupervised Machine Learning to Address Big Data from Modern X-ray Diffraction
论文作者
论文摘要
当考虑集体电子行为及其波动时,结晶材料的信息含量就会变得天文学。在过去的十年中,现代X射线设施的源亮度和检测器技术的改进使得捕获了此信息的一部分。现在,主要的挑战是当全面的分析超出人类范围时,从大数据集中理解和发现科学原理。我们报告了一种新型的无监督机器学习方法XRD温度聚类(X-TEC)的开发,该方法可以自动提取电荷密度波(CDW)订单参数,并检测一系列高量X射线衍射(XRD)测量的高量X射线衍射(XRD)。我们将X-TEC应用于XRD数据上的Quasi-Skutterudite材料家族(Ca $ _x $ _x $ sr $ _ {1-x} $)$ _ 3 $ rh $ _4 $ _4 $ sn $ _ {13} $,在其中观察到来自充电的量子关键点是由CA浓度的函数观察到的。我们进一步将X-TEC应用于Pyrochlore金属的XRD数据,CD $ _2 $ re $ _2 $ o $ _7 $,以调查其两个备受争议的结构相变,并发现伴随它们的Goldstone模式。我们证明了当人类研究人员将X-TEC结果与物理原理联系起来时,如何获得前所未有的原子量表知识。具体而言,我们从X-TEC重新选择的选择规则中提取,即CD和RE位移的幅度大致相等,但不相相。这一发现揭示了以前未知的$ 5D^2 $ re的参与,支持了对结构顺序的电子起源的想法。我们的方法可以通过允许operando数据分析来从根本上转化XRD实验,并通过发现fly的相位空间的有趣区域来使研究人员能够完善实验。
The information content of crystalline materials becomes astronomical when collective electronic behavior and their fluctuations are taken into account. In the past decade, improvements in source brightness and detector technology at modern x-ray facilities have allowed a dramatically increased fraction of this information to be captured. Now, the primary challenge is to understand and discover scientific principles from big data sets when a comprehensive analysis is beyond human reach. We report the development of a novel unsupervised machine learning approach, XRD Temperature Clustering (X-TEC), that can automatically extract charge density wave (CDW) order parameters and detect intra-unit cell (IUC) ordering and its fluctuations from a series of high-volume X-ray diffraction (XRD) measurements taken at multiple temperatures. We apply X-TEC to XRD data on a quasi-skutterudite family of materials, (Ca$_x$Sr$_{1-x}$)$_3$Rh$_4$Sn$_{13}$, where a quantum critical point arising from charge order is observed as a function of Ca concentration. We further apply X-TEC to XRD data on the pyrochlore metal, Cd$_2$Re$_2$O$_7$, to investigate its two much debated structural phase transitions and uncover the Goldstone mode accompanying them. We demonstrate how unprecedented atomic scale knowledge can be gained when human researchers connect the X-TEC results to physical principles. Specifically, we extract from the X-TEC-revealed selection rule that the Cd and Re displacements are approximately equal in amplitude, but out of phase. This discovery reveals a previously unknown involvement of $5d^2$ Re, supporting the idea of an electronic origin to the structural order. Our approach can radically transform XRD experiments by allowing in-operando data analysis and enabling researchers to refine experiments by discovering interesting regions of phase space on-the-fly.