论文标题

微晶计数和广告的双重熵中的通用对数行为$ _4 $黑洞

Universal Logarithmic Behavior in Microstate Counting and the Dual One-loop Entropy of AdS$_4$ Black Holes

论文作者

Zayas, Leopoldo A. Pando, Xin, Yu

论文摘要

我们在数值上研究了$ g $ riemann Surface times a Circle,$σ_g\ times s^1 $的几个三维超对称场理论的拓扑扭曲索引。我们表明,对于具有$ n^{3/2} $的订单的大量理论,其中$ n $通常是量规组的等级,对表单$ \ frac {g-1} {2} {2} {2} \ log n $进行通用对数校正。我们解释了如何作为对磁性带电的双重超级重力理论的单循环校正来获得的,对于磁性带电的,渐近,渐近广告$ _4 \ times m^7 $黑洞,用于大型Sasaki-Einstein歧管,$ M^7 $。对数校正的匹配依赖于$ M^7 $的通用同源性属性,并且与黑洞电荷无关。我们认为,我们的超级重力结果也适用于旋转,渐近电荷的广告$ _4 \ times m^7 $黑洞。我们明确地介绍了对应于$ m^7 = n^{0,1,0}的重力端,V^{5,2} $和$ q^{1,1,1,1} $。

We numerically study the topologically twisted index of several three-dimensional supersymmetric field theories on a genus $g$ Riemann surface times a circle, $Σ_g\times S^1$. We show that for a large class of theories with leading term of the order $N^{3/2}$, where $N$ is generically the rank of the gauge group, there is a universal logarithmic correction of the form $\frac{g-1}{2} \log N$. We explain how this logarithmic subleading correction can be obtained as a one-loop effect on the dual supergravity theory for magnetically charged, asymptotically AdS$_4\times M^7$ black holes for a large class of Sasaki-Einstein manifolds, $M^7$. The matching of the logarithmic correction relies on a generic cohomological property of $M^7$ and it is independent of the black hole charges. We argue that our supergravity results apply also to rotating, electrically charged asymptotically AdS$_4\times M^7$ black holes. We present explicitly the quiver gauge theories and the gravity side corresponding to $M^7=N^{0,1,0}, V^{5,2}$ and $Q^{1,1,1}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源