论文标题

通过强化学习来管理用于流推理的缓存策略

Managing caching strategies for stream reasoning with reinforcement learning

论文作者

Dodaro, Carmine, Eiter, Thomas, Ogris, Paul, Schekotihin, Konstantin

论文摘要

对于连续变化的数据,有效的决策对于许多应用程序领域,例如网络物理系统,行业数字化等。现代流推理框架允许人们使用新数据到达流中的程序来建模和解决各种现实世界问题。应用技术的使用,例如,类似数据模式的物质化或真实维护算法,以避免昂贵的重新计算,从而确保流媒体推理器的低潜伏期和高吞吐量。但是,现有方法的表现力非常有限,例如,它们不能用来编码与限制的问题,这些问题通常在实践中出现。在本文中,我们提出了一种新颖的方法,该方法使用以冲突为导向的约束学习(CDCL)通过使用智能管理的约束来有效地更新遗产解决方案。特别是,我们研究了增强学习的适用性,以不断评估在当前求解算法的先前调用中计算出的学习约束的实用性。对现实世界重新配置问题进行的评估表明,从以前的迭代中提供具有相关学习的限制的CDCL算法导致算法在流推理方案中的绩效改善。 正在考虑在TPLP中接受。

Efficient decision-making over continuously changing data is essential for many application domains such as cyber-physical systems, industry digitalization, etc. Modern stream reasoning frameworks allow one to model and solve various real-world problems using incremental and continuous evaluation of programs as new data arrives in the stream. Applied techniques use, e.g., Datalog-like materialization or truth maintenance algorithms to avoid costly re-computations, thus ensuring low latency and high throughput of a stream reasoner. However, the expressiveness of existing approaches is quite limited and, e.g., they cannot be used to encode problems with constraints, which often appear in practice. In this paper, we suggest a novel approach that uses the Conflict-Driven Constraint Learning (CDCL) to efficiently update legacy solutions by using intelligent management of learned constraints. In particular, we study the applicability of reinforcement learning to continuously assess the utility of learned constraints computed in previous invocations of the solving algorithm for the current one. Evaluations conducted on real-world reconfiguration problems show that providing a CDCL algorithm with relevant learned constraints from previous iterations results in significant performance improvements of the algorithm in stream reasoning scenarios. Under consideration for acceptance in TPLP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源