论文标题
关于该行的可解决方向的同态同构的商组的Metabelian属性
On the metabelian property of quotient groups of solvable groups of orientation-preserving homeomorphisms of the line
论文作者
论文摘要
对于一类可解决的同态同态的群体,保留方向并包含自由作用元素,我们建立了商组$ g/h_g $的分类,其中正常亚组$ h_g $的元素是最小设置的稳定器。这个事实是分类定理中的重要元素,尤其是在研究汤普森组$ f $的研究中。
For the class of solvable groups of homeomorphisms of the line preserving orientation and containing a freely acting element, we establish the metabelianity of the quotient group $G/H_G$, where the elements of the normal subgroup $H_G$ are stabilizers of the minimal set. This fact is an important element in the classification theorem, used, in particular, in the study of the Thompson's group $F$.