论文标题
非线性动力学系统的逆变异问题
Inverse variational problem for nonlinear dynamical systems
论文作者
论文摘要
在本文中,我们选择采用两种不同的方法来解决变异的计算的反问题。第一种方法是基于Lagrangian函数的积分表示,该函数使用了运动方程的第一个积分,而第二种函数则依赖于众所周知的Noether定理的概括,并直接从运动方程式构造了Lagrangian。作为拉格朗日函数的整体表示的应用,我们首先为修改的Emden型方程的拉格朗日提供了一些有用的评论,然后获得(i)(i)Cubic-Quintic Duffing振荡器的拉格朗日功能的结果,(II)liénard-type型振动器和(IIII)Mathews-Lakews-Lakews-Laksshmananananananananananananananananananananananananananananananananananananan oscillator。与修改的Emden型方程一样,这些振荡器的特征是非标准的Lagrangians,除了一个人还可以为Duffing振荡器分配标准的Lagrangian。我们使用第二种方法来找到(iv)亚伯拉罕·洛林兹振荡器,(v)lorentz振荡器和(vi)van der pol振荡器的三个速度依赖性方程的间接分析(Lagrangian)表示。对于(i) - (vi)的每个动力学系统,我们计算了雅各比积分的结果,从而提供了一种获得Hamiltonian函数的方法,而无需求助于使用所谓的Legendre变换。
In this paper we have chosen to work with two different approaches to solving the inverse problem of the calculus of variation. The first approach is based on an integral representation of the Lagrangian function that uses the first integral of the equation of motion while the second one relies on a generalization of the well known Noether's theorem and constructs the Lagrangian directly from the equation of motion. As an application of the integral representation of the Lagrangian function we first provide some useful remarks for the Lagrangian of the modified Emden-type equation and then obtain results for Lagrangian functions of (i) cubic-quintic Duffing oscillator, (ii) Liénard-type oscillator and (iii) Mathews-Lakshmanan oscillator. As with the modified Emden-type equation these oscillators were found to be characterized by nonstandard Lagrangians except that one could also assign a standard Lagrangian to the Duffing oscillator. We used the second approach to find indirect analytic (Lagrangian) representation for three velocity-dependent equations for (iv) Abraham-Lorentz oscillator, (v) Lorentz oscillator and (vi) Van der Pol oscillator. For each of the dynamical systems from (i)-(vi) we calculated the result for Jacobi integral and thereby provided a method to obtain the Hamiltonian function without taking recourse to the use of the so-called Legendre transformation.