论文标题
很少有射击学习框架可以减少医学图像中观察者间的可变性
Few Shot Learning Framework to Reduce Inter-observer Variability in Medical Images
论文作者
论文摘要
大多数计算机辅助病理检测系统依赖大量质量注释的数据来帮助诊断和后续程序。但是,确保大量注释的医学图像数据的质量可能是主观且昂贵的。在这项工作中,我们提出了一个新颖的标准化框架,该框架实现了三个几次学习(FSL)模型,该模型可以通过每3D堆栈的最大图像进行迭代训练,以生成每个测试图像的多个区域建议(RPS)。这些FSL模型包括一个新型的并行回声状态网络(PARESN)框架和增强的U-NET模型。此外,我们提出了一种新型的目标标签选择算法(TLSA),该算法测量RPS和手动注释的目标标签之间的相对可符合性,以检测每个图像的“最佳”质量注释。使用FSL模型,我们的系统可在供应商图像堆栈中实现0.28-0.64骰子系数,用于视网膜内囊肿分割。此外,TLSA能够以60-97%的图像自动从其嘈杂的对应物中自动对高质量的目标标签进行分类,同时确保对剩余图像进行手动监督。同样,带有PARESN模型的拟议框架最大程度地减少了手动注释检查的图像总数的12-28%。 TLSA指标进一步为自动注释质量保证提供了置信度评分。因此,提出的框架也可以灵活地扩展到其他图像堆栈的质量图像注释策划。
Most computer aided pathology detection systems rely on large volumes of quality annotated data to aid diagnostics and follow up procedures. However, quality assuring large volumes of annotated medical image data can be subjective and expensive. In this work we present a novel standardization framework that implements three few-shot learning (FSL) models that can be iteratively trained by atmost 5 images per 3D stack to generate multiple regional proposals (RPs) per test image. These FSL models include a novel parallel echo state network (ParESN) framework and an augmented U-net model. Additionally, we propose a novel target label selection algorithm (TLSA) that measures relative agreeability between RPs and the manually annotated target labels to detect the "best" quality annotation per image. Using the FSL models, our system achieves 0.28-0.64 Dice coefficient across vendor image stacks for intra-retinal cyst segmentation. Additionally, the TLSA is capable of automatically classifying high quality target labels from their noisy counterparts for 60-97% of the images while ensuring manual supervision on remaining images. Also, the proposed framework with ParESN model minimizes manual annotation checking to 12-28% of the total number of images. The TLSA metrics further provide confidence scores for the automated annotation quality assurance. Thus, the proposed framework is flexible to extensions for quality image annotation curation of other image stacks as well.