论文标题

通过正规运算符推断,数据驱动的降级模型,用于单注射器燃烧过程

Data-driven reduced-order models via regularized operator inference for a single-injector combustion process

论文作者

McQuarrie, Shane A., Huang, Cheng, Willcox, Karen E.

论文摘要

本文通过操作员推断来推导火箭发动机燃烧动力学的预测性降低模型,这是一种科学的机器学习方法,可将数据驱动的学习与基于物理的建模融为一体。该方法的非侵入性质可实现可变的变换,以揭示系统结构。本文的具体贡献是提高操作员推理方法的配方鲁棒性和算法可伸缩性。正规化被引入公式以避免过度拟合。确定最佳正则化的任务是作为优化问题,可以平衡训练错误和长期集成动力学的稳定性。提出了可扩展算法和开源实现,然后为单个注射器火箭燃烧示例证明。该示例表现出丰富的动态,这些动力很难用最先进的模型来捕获。凭借适当的正则化和知情的学习变量选择,还原级的模型在重新预测训练制度和可接受的准确性方面表现出很高的准确性,并在预测未来的动态方面具有可接受的准确性,同时实现了接近计算成本的一百万倍。与最先进的模型减少方法相比,操作员推理模型在大约千分之一的计算成本中提供相同或更高的精度。

This paper derives predictive reduced-order models for rocket engine combustion dynamics via Operator Inference, a scientific machine learning approach that blends data-driven learning with physics-based modeling. The non-intrusive nature of the approach enables variable transformations that expose system structure. The specific contribution of this paper is to advance the formulation robustness and algorithmic scalability of the Operator Inference approach. Regularization is introduced to the formulation to avoid over-fitting. The task of determining an optimal regularization is posed as an optimization problem that balances training error and stability of long-time integration dynamics. A scalable algorithm and open-source implementation are presented, then demonstrated for a single-injector rocket combustion example. This example exhibits rich dynamics that are difficult to capture with state-of-the-art reduced models. With appropriate regularization and an informed selection of learning variables, the reduced-order models exhibit high accuracy in re-predicting the training regime and acceptable accuracy in predicting future dynamics, while achieving close to a million times speedup in computational cost. When compared to a state-of-the-art model reduction method, the Operator Inference models provide the same or better accuracy at approximately one thousandth of the computational cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源