论文标题

扭曲材料的薄板的电动力学

Electrodynamics of Thin Sheets of Twisted Material

论文作者

Nguyen, Dung Xuan, Son, Dam Thanh

论文摘要

我们构建了描述扭曲材料薄板的光活性的最小理论,其中最简单的例子是扭曲的双层石墨烯。我们介绍了“扭曲的电导率”的概念,该概念将薄膜的奇偶校验反应参数到垂直落下的电磁波,其波长大于板的厚度。我们表明,低频法拉第旋转角在不同阶段具有不同的行为。对于绝缘子,Faraday角在低频下的行为为$ω^2 $,其系数由电动四极矩的组件与外部电场之间的线性关系确定。对于超导体,当传入EM波的频率低于超导间隙时,法拉第旋转角度是恒定的,并且由在金茨堡 - 兰道功能中不变的Lifshitz的系数确定,描述了超导状态。在金属状态下,我们表明扭曲的电导率与围绕费米表面的“磁性螺旋性”(速度和磁矩的标量和磁矩的标量产物)成正比。该理论是一般的,并且适用于密切相关的阶段。

We construct a minimal theory describing the optical activity of a thin sheet of a twisted material, the simplest example of which is twisted bilayer graphene. We introduce the notion of "twisted electrical conductivity", which parametrizes the parity-odd response of a thin film to a perpendicularly falling electromagnetic waves with wavelength larger than the thickness of the sheet. We show that the low-frequency Faraday rotation angle has different behaviors in different phases. For an insulator, the Faraday angle behaves as $ω^2$ at low frequencies, with the coefficient being determined by the linear relationship between a component of the electric quadrupole moment and the external electric field. For superconductors, the Faraday rotation angle is constant when the frequency of the incoming EM waves is below the superconducting gap and is determined by the coefficient of the Lifshitz invariant in the Ginzburg-Landau functional describing the superconducting state. In the metallic state, we show that the twisted conductivity is proportional to the "magnetic helicity" (scalar product of the velocity and the magnetic moment) of the quasiparticle, averaged around the Fermi surface. The theory is general and is applicable to strongly correlated phases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源